background image

CY7C1246V18, CY7C1257V18
CY7C1248V18, CY7C1250V18

Document Number: 001-06348  Rev. *D

Page 22 of 27

Switching Characteristics

 

Over the Operating Range

[20, 21]

Cypress 

Parameter

Consortium 

Parameter

Description

375 MHz

333 MHz

300 MHz

Unit

Min

Max

Min

Max

Min

Max

t

POWER

V

DD

(Typical) to the first Access

[22]

1

1

1

ms

t

CYC

t

KHKH

K Clock Cycle Time

2.66

8.4

3.0

8.4

3.3

8.4

ns

t

KH

t

KHKL

Input Clock (K/K) HIGH

0.4

0.4

0.4

t

CYC

t

KL

t

KLKH

Input Clock (K/K)  LOW

0.4

0.4

0.4

t

CYC

t

KHKH

t

KHKH

K Clock Rise to K Clock Rise (rising edge to rising edge) 1.13

1.28

1.40

ns

Setup Times

t

SA

t

AVKH 

Address Setup to K Clock Rise

0.4

0.4

0.4

ns

t

SC

t

IVKH

Control Setup to K Clock Rise (LD, R/W)

0.4

0.4

0.4

ns

t

SCDDR

t

IVKH

Double Data Rate Control Setup to Clock (K, K) Rise 
(BWS

0

, BWS

1

, BWS

2

, BWS

3

)

0.28

0.28

0.28

ns

t

SD

t

DVKH

D

[X:0]

 Setup to Clock (K/K)  Rise

0.28

0.28

0.28

ns

Hold Times

t

HA

t

KHAX

Address Hold after K Clock

 

Rise

0.4

0.4

0.4

ns

t

HC

t

KHIX

Control Hold after K Clock Rise (LD, R/W)

0.4

0.4

0.4

ns

t

HCDDR

t

KHIX

Double Data Rate Control Hold after Clock (K/K) Rise 
(BWS

0

, BWS

1

, BWS

2

, BWS

3

)

0.28

0.28

0.28

ns

t

HD

t

KHDX

D

[X:0]

 Hold after Clock (K/K)  Rise

0.28

0.28

0.28

ns

Output Times

t

CO

t

CHQV

K/K Clock Rise to Data Valid

0.45

0.45

0.45

ns

t

DOH

t

CHQX

Data Output Hold after K/K Clock Rise (Active to Active) –0.45

–0.45

–0.45

ns

t

CCQO

t

CHCQV

K/K Clock Rise to Echo Clock Valid

0.45

0.45

0.45

ns

t

CQOH

t

CHCQX

Echo Clock Hold after K/K Clock Rise 

–0.45

–0.45

–0.45

ns

t

CQD

t

CQHQV 

Echo Clock High to Data Valid

0.2

0.2

0.2

ns

t

CQDOH

t

CQHQX

Echo Clock High to Data Invalid

–0.2

–0.2

–0.2

ns

t

CQH

t

CQHCQL

Output Clock (CQ/CQ) HIGH

[23]

0.88

1.03

1.15

ns

t

CQHCQH

t

CQHCQH

CQ Clock Rise to CQ Clock Rise

[23]

(rising edge to rising edge)

0.88

1.03

1.15

ns

t

CHZ

t

CHQZ

Clock (K/K) Rise to High-Z (Active to High-Z)

[24, 25]

0.45

0.45

0.45

ns

t

CLZ

t

CHQX1

Clock (K/K) Rise to Low-Z

[24, 25]

–0.45

–0.45

–0.45

ns

t

QVLD

t

CQHQVLD

Echo Clock High to QVLD Valid

[26]

–0.20 0.20 –0.20 0.20 –0.20 0.20

ns

DLL Timing

t

KC Var

t

KC Var

Clock Phase Jitter

0.20

0.20

0.20

ns

t

KC lock

t

KC lock

DLL Lock Time (K)

2048

2048

2048

Cycles

t

KC Reset

t

KC Reset

K Static to DLL Reset

[27]

30

30

30

ns

Notes

21. When a part with a maximum frequency above 300 MHz is operating at a lower clock frequency, it requires the input timing of the frequency range in which it is 

being operated and outputs data with the output timing of that frequency range. 

22. This part has an internal voltage regulator; t

POWER

 is the time that the power must be supplied above V

DD 

minimum initially before a read or write operation can 

be initiated.

23. These parameters are extrapolated from the input timing parameters (t

KHKH 

- 250 ps, where 250 ps is the internal jitter. An input jitter of 200 ps (t

KC Var

) is already 

included in the t

KHKH

). These parameters are only guaranteed by design and are not tested in production.

24. t

CHZ

, t

CLZ

, are specified with a load capacitance of 5 pF as in (b) of 

“AC Test Loads and Waveforms” on page 21

. Transition is measured 

±

100 mV from steady-state 

voltage.

25. At any voltage and temperature t

CHZ

 is less than t

CLZ 

and t

CHZ

 less than t

CO

26. t

QVLD 

spec is applicable for both rising and falling edges of QVLD signal.

27. Hold to >V

IH

 or <V

IL

.

[+] Feedback 

[+] Feedback 

Summary of Contents for CY7C1246V18

Page 1: ...V18 are 1 8V Synchronous Pipelined SRAM equipped with DDR II architecture The DDR II consists of an SRAM core with advanced synchronous peripheral circuitry Addresses for read and write are latched on...

Page 2: ...Data Reg R W DQ 7 0 Output Logic Reg Reg Reg 8 8 16 8 NWS 1 0 VREF Write Add Decode 8 8 LD Control 21 2M x 8 Array 2M x 8 Array Write Reg Write Reg CQ CQ R W DOFF QVLD 8 CLK A 20 0 Gen K K Control Lo...

Page 3: ...W DQ 17 0 Output Logic Reg Reg Reg 18 18 36 18 BWS 1 0 VREF Write Add Decode 18 18 LD Control 20 1M x 18 Array 1M x 18 Array Write Reg Write Reg CQ CQ R W DOFF QVLD 18 CLK A 18 0 Gen K K Control Logic...

Page 4: ...NC NC VSS NC DQ2 NC NC NC VREF NC NC VDDQ NC VDDQ NC NC VDDQ VDDQ VDDQ NC VDDQ NC DQ1 NC VDDQ VDDQ NC VSS NC NC NC TDI TMS VSS A NC A NC NC NC ZQ NC DQ0 NC NC NC NC A CY7C1257V18 4M x 9 2 3 4 5 6 7 1...

Page 5: ...NC NC NC VREF NC DQ3 VDDQ NC VDDQ NC DQ5 VDDQ VDDQ VDDQ NC VDDQ NC DQ4 NC VDDQ VDDQ NC VSS NC NC NC TDI TMS VSS A NC A NC NC NC ZQ NC DQ2 NC DQ1 NC NC A CY7C1250V18 1M x 36 2 3 4 5 6 7 1 A B C D E F G...

Page 6: ...8 0 and BWS1 controls D 17 9 CY7C1250V18 BWS0 controls D 8 0 BWS1 controls D 17 9 BWS2 controls D 26 18 and BWS3 controls D 35 27 All the Byte Write Selects are sampled on the same edge as the data De...

Page 7: ...gh a 10 Kohm or less pull up resistor The device behaves in DDR I mode when the DLL is turned off In this mode the device can be operated at a frequency of up to 167 MHz with DDR I timing TDO Output T...

Page 8: ...data flow such that 18 bits of data can be transferred into the device on every rising edge of the input clocks K and K When write access is deselected the device ignores all inputs after the pending...

Page 9: ...he truth table for the CY7C1246V18 CY7C1257V18 CY7C1248V18 and CY7C1250V18 follows 2 3 4 5 6 7 Operation K LD R W DQ DQ Write Cycle Load address wait one cycle input write data on consecutive K and K...

Page 10: ...7C1246V18 only the upper nibble D 7 4 is written into the device D 3 0 remains unaltered CY7C1248V18 only the upper byte D 17 9 is written into the device D 8 0 remains unaltered H L L H During the da...

Page 11: ...y the byte D 17 9 is written into the device D 8 0 and D 35 18 remain unaltered H L H H L H During the data portion of a write sequence only the byte D 17 9 is written into the device D 8 0 and D 35 1...

Page 12: ...dge of TCK Instruction Register Three bit instructions can be serially loaded into the instruction register This register is loaded when it is placed between the TDI and TDO pins as shown in TAP Contr...

Page 13: ...ster After the data is captured it is possible to shift out the data by putting the TAP into the Shift DR state This places the boundary scan register between the TDI and TDO pins PRELOAD places an in...

Page 14: ...ler follows 9 TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR SELECT IR SCAN CAPTURE IR SHIFT IR EXIT1 IR PAUSE IR EXIT2 IR UPDATE IR 1 0 1 1 0...

Page 15: ...GH Voltage 0 65VDD VDD 0 3 V VIL Input LOW Voltage 0 3 0 35VDD V IX Input and Output Load Current GND VI VDD 5 5 A 0 0 1 2 29 30 31 Boundary Scan Register Identification Register 0 1 2 108 0 1 2 Instr...

Page 16: ...TDI Hold after Clock Rise 5 ns tCH Capture Hold after Clock Rise 5 ns Output Times tTDOV TCK Clock LOW to TDO Valid 10 ns tTDOX TCK Clock LOW to TDO Invalid 0 ns TAP Timing and Test Conditions Figure...

Page 17: ...struction Codes Instruction Code Description EXTEST 000 Captures the input output ring contents IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and TDO Thi...

Page 18: ...35 10E 63 2A 91 3L 8 9R 36 10D 64 1A 92 1M 9 11P 37 9E 65 2B 93 1L 10 10P 38 10C 66 3B 94 3N 11 10N 39 11D 67 1C 95 3M 12 9P 40 9C 68 1B 96 1N 13 10M 41 9D 69 3D 97 2M 14 11N 42 11B 70 3C 98 3P 15 9M...

Page 19: ...power and clock K K for 2048 cycles to lock the DLL DLL Constraints DLL uses K clock as its synchronizing input The input must have low phase jitter which is specified as tKC Var The DLL functions at...

Page 20: ...0 1 mA Nominal Impedance VDDQ 0 2 VDDQ V VOL LOW Output LOW Voltage IOL 0 1 mA Nominal Impedance VSS 0 2 V VIH Input HIGH Voltage VREF 0 1 VDDQ 0 15 V VIL Input LOW Voltage 0 15 VREF 0 1 V IX Input L...

Page 21: ...Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance per EIA JESD51 16 25 C W JC Thermal Resistance Junction to Case 2 91 C W AC Test Loads and Waveform...

Page 22: ...2 ns tCQDOH tCQHQX Echo Clock High to Data Invalid 0 2 0 2 0 2 ns tCQH tCQHCQL Output Clock CQ CQ HIGH 23 0 88 1 03 1 15 ns tCQHCQH tCQHCQH CQ Clock Rise to CQ Clock Rise 23 rising edge to rising edg...

Page 23: ...OH QVLD t NOP DQ KHKH 12 Read Latency 2 0 Cycles NOP NOP CCQO tSD HD tSD tHD t CLZ t CHZ D20 D21 D30 D31 t CQDOH Q00 Q11 Q01 Q10 tDOH tCO Q40 Q41 tCQD t t tCQH CQHCQH Notes 28 Q00 refers to output fro...

Page 24: ...all Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1257V18 375BZI CY7C1248V18 375BZI CY7C1250V18 375BZI CY7C1246V18 375BZXI 51 85195 165 ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Pb...

Page 25: ...00BZXC CY7C1246V18 300BZI 51 85195 165 ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1257V18 300BZI CY7C1248V18 300BZI CY7C1250V18 300BZI CY7C1246V18 300BZXI 51 85195 165 ball Fine P...

Page 26: ...Y7C1250V18 Document Number 001 06348 Rev D Page 26 of 27 Package Diagram Figure 6 165 ball FBGA 15 x 17 x 1 40 mm 51 85195 0 2 2 8 8 8 3 4 0 0 2 2 4 0 6 7 44 6 7 0 2 0 2 3 2 0 490 3 2 3 3 4 3 0 7 4 G...

Page 27: ...e changes without further notice to the materials described herein Cypress does not assume any liability arising out of the application or use of any product or circuit described herein Cypress does n...

Reviews: