background image

STK14CA8

Document Number: 001-51592 Rev. **

Page 12 of 16

Software STORE

Data can be transferred from the SRAM to the nonvolatile
memory by a software address sequence. The STK14CA8
software STORE cycle is initiated by executing sequential E
controlled or G controlled READ cycles from six specific address
locations in exact order. During the STORE cycle, previous data
is erased and then the new data is programmed into the nonvol-
atile elements. After a STORE cycle is initiated, further memory
inputs and outputs are disabled until the cycle is completed.

To initiate the software STORE cycle, the following READ
sequence must be performed:

When the sixth address in the sequence is entered, the STORE
cycle commences and the chip is disabled. It is important that
READ cycles and not WRITE cycles be used in the sequence
and that G is active. After the t

STORE 

cycle time is fulfilled, the

SRAM is again activated for READ and WRITE operation.

Software RECALL

Data can be transferred from the nonvolatile memory to the
SRAM by a software address sequence. A software RECALL
cycle is initiated with a sequence of READ operations in a
manner similar to the software STORE initiation. To initiate the
RECALL cycle, the following sequence of E controlled or G
controlled READ operations must be performed:

Internally, RECALL is a two-step procedure. First, the SRAM
data is cleared, and second, the nonvolatile information is trans-
ferred into the SRAM cells. After the t

RECALL

 cycle time, the

SRAM is again ready for READ or WRITE operations. The
RECALL operation in no way alters the data in the nonvolatile
storage elements.

Data Protection

The STK14CA8 protects data from corruption during low voltage
conditions by inhibiting all externally initiated STORE and
WRITE operations. The low voltage condition is detected when
V

CC

<V

SWITCH

.

If the STK14CA8 is in a WRITE mode (both E and W low) at
power up, after a RECALL, or after a STORE, the WRITE is
inhibited until a negative transition on E or W is detected. This
protects against inadvertent writes during power up or brown out
conditions.

Noise Considerations

The STK14CA8 is a high speed memory and so must have a high
frequency bypass capacitor of approximately 0.1 µF connected
between V

CC

 and V

SS

, using leads and traces that are a short

as possible. As with all high speed CMOS ICs, careful routing of
power, ground, and signals reduce circuit noise.

Best Practices

nvSRAM products have been used effectively for over 15 years.
While ease-of-use is one of the product’s main system values,
experience gained working with hundreds of applications has
resulted in the following suggestions as best practices:

The nonvolatile cells in an nvSRAM are programmed on the 
test floor during final test and quality assurance. Incoming 
inspection routines at customer or contract manufacturer’s 
sites sometimes reprograms these values. Final NV patterns 
are typically repeating patterns of AA, 55, 00, FF, A5, or 5A. 
End product’s firmware should not assume an NV array is in a 
set programmed state. Routines that check memory content 
values to determine first time system configuration, cold or 
warm boot status, etc. should always program a unique NV 
pattern (for example, complex 4-byte pattern of 46 E6 49 53 
hex or more random bytes) as part of the final system manufac-
turing test to ensure these system routines work consistently.

Power up boot firmware routines should rewrite the nvSRAM 
into the desired state such as AutoStore enabled. While the 
nvSRAM is shipped in a preset state, best practice is to again 
rewrite the nvSRAM into the desired state as a safeguard 
against events that might flip the bit inadvertently (program 
bugs, incoming inspection routines, and so on.)

If AutoStore is firmware disabled, it does not reset to “AutoStore 
enabled” on every power down event captured by the nvSRAM. 
The application firmware should re-enable or re-disable 
AutoStore on each reset sequence based on the behavior 
desired.

The V

cap

 value specified in this data sheet includes a minimum 

and a maximum value size. Best practice is to meet this 
requirement and not exceed the max V

cap

 value because the 

nvSRAM internal algorithm calculates V

cap

 charge time based 

on this max Vcap value. Customers that want to use a larger 
V

cap

 value to make sure there is extra store charge and store 

time should discuss their V

cap

 size selection with Cypress to 

understand any impact on the V

cap

 voltage level at the end of 

a t

RECALL

 period.

Read Address

0x4E38

Valid READ

Read Address

0xB1C7

Valid READ

Read Address

0x83E0

Valid READ

Read Address

0x7C1F

Valid READ

Read Address

0x703F

Valid READ

Read Address

0x8FC0

Initiate STORE Cycle

Read Address

0x4E38

Valid READ

Read Address

0xB1C7

Valid READ

Read Address

0x83E0

Valid READ

Read Address

0x7C1F

Valid READ

Read Address

0x703F

Valid READ

Read Address

0x4C63

Initiate RECALL Cycle

[+] Feedback 

Summary of Contents for AutoStore STK14CA8

Page 1: ...ment included with each memory cell This SRAM provides fast access and cycle times ease of use and unlimited read and write endurance of a normal SRAM Data transfers automatically to the nonvolatile s...

Page 2: ...ddress inputs select one of 131 072 bytes in the nvSRAM array DQ7 DQ0 I O Data Bi directional 8 bit data bus for accessing the nvSRAM E Input Chip Enable The active low E input selects the device W In...

Page 3: ...CC Current 65 55 50 70 60 55 mA mA mA tAVAV 25 ns tAVAV 35 ns tAVAV 45 ns Dependent on output loading and cycle rate Values obtained without output loads ICC2 Average VCC Current during STORE 3 3 mA A...

Page 4: ...C f 1 0 MHz Figure 4 AC Output Loading Figure 5 AC Output Loading for Tristate Specifications tHZ tLZ tWLQZ tWHQZ tGLQX tGHQZ Symbol Parameter 2 Max Units Conditions CIN Input Capacitance 7 pF V 0 to...

Page 5: ...put Hold after Address Change 3 3 3 ns 6 tELQX tLZ Address Change or Chip Enable to Output Active 3 3 3 ns 7 tEHQZ 5 tHZ Address Change or Chip Disable to Output Inactive 10 13 15 ns 8 tGLQX tOLZ Outp...

Page 6: ...s 17 tAVWH tAVEH tAW Address Setup to End of Write 20 25 30 ns 18 tAVWL tAVEL tAS Address Setup to Start of Write 0 0 0 ns 19 tWHAX tEHAX tWR Address Hold after End of Write 0 0 0 ns 20 tWLQZ 5 7 tWZ...

Page 7: ...its Notes Standard Alternate Min Max 22 tHRECALL Power up RECALL Duration 20 ms 9 23 tSTORE tHLHZ STORE Cycle Duration 12 5 ms 10 11 24 VSWITCH Low Voltage Trigger Level 2 65 V 25 VCCRISE VCC Rise Tim...

Page 8: ...LL Initiation Cycle Time 25 35 45 ns 13 27 tAVEL tAVGL tAS Address Setup Time 0 0 0 ns 28 tELEH tGLGH tCW Clock Pulse Width 20 25 30 ns 29 tEHAX tGHAX Address Hold Time 1 1 1 ns 30 tRECALL tRECALL REC...

Page 9: ...31 NO Symbols Parameter STK14CA8 Units Notes Standard Min Max 33 tSS Soft Sequence Processing Time 70 s 15 16 33 33 Notes 14 On a hardware STORE initiation SRAM operation continues to be enabled for...

Page 10: ...Output Data Output Data Active 17 18 19 L H L 0x04E38 0x0B1C7 0x083E0 0x07C1F 0x0703F Read SRAM Read SRAM Read SRAM Read SRAM Read SRAM Output Data Output Data Output Data Output Data Output Data Acti...

Page 11: ...is enabled by default on the STK14CA8 During normal operation the device draws current from VCC to charge a capacitor connected to the VCAP pin This stored charge is used by the chip to perform a sing...

Page 12: ...areful routing of power ground and signals reduce circuit noise Best Practices nvSRAM products have been used effectively for over 15 years While ease of use is one of the product s main system values...

Page 13: ...rmed in a manner similar to the software STORE initi ation To initiate the AutoStore Disable sequence the following sequence of E controlled or G controlled READ operations must be performed The AutoS...

Page 14: ...RAM SSOP48 300 35 ns Commercial STK14CA8 RF45 3V 128Kx8 AutoStore nvSRAM SSOP48 300 45 ns Commercial STK14CA8 RF25TR 3V 128Kx8 AutoStore nvSRAM SSOP48 300 25 ns Commercial STK14CA8 RF35TR 3V 128Kx8 Au...

Page 15: ...STK14CA8 Document Number 001 51592 Rev Page 15 of 16 Package Diagrams Figure 17 32 Pin 300 mil SOIC 51 85127 Figure 18 48 Pin 300 mil SSOP 51 85061 51 85127 A 51 85061 C Feedback...

Page 16: ...it as specified in the applicable agreement Any reproduction modification translation compilation or representation of this Source Code except as specified above is prohibited without the express writ...

Reviews: