26
17
The radius of the Inscribed circle.
The inscribed circle is shown in the diagram on the
right.When the inscribed circle has radius , the area of
the appropriate triangle is:
Now, using herons formula it is possible to determine
the area of the triangle in terms of the length of the
three sides, whereby the radius of the circle is:
,
Program
?→ A:?→ B:?→ C:
(A + B + C)÷2→ D:√(D(D - A)
(D - B)
(D - C)
)
÷ D → M:M <
49 STEP
>
OUTPUT
M
: the radius of the inscribed circle
Execution Example:
For a triangle with sides of length 3, 4 and 5, the radius of the inscribed circle is 1:
R
S
AR
2
------
BR
2
------
CR
2
------
+
+
A
B C
+ +
(
)
R
2
-----------------------------
=
=
A
B
C
R
R
D D A
–
(
)
D B
–
(
)
D C
–
(
)
D
----------------------------------------------------------
=
D
A
B
C
+ +
2
---------------------
=
ON
MODE
MODE
MODE
1
PRGM
MODE
1
COMP
1
P1
Prog
1
S A
D R
P1
P1 P2 P3 P4
G
3
EXE
S A
D R
P1
P1 P2 P3 P4
G
4
EXE
S A
D R
P1
P1 P2 P3 P4
G
5
EXE
M
S A
D R
P1
P1 P2 P3 P4
G
関数電卓事例集
.book 26
ページ
2002年9月2日 月曜日 午後6時51分
Summary of Contents for 3950P
Page 1: ......
Page 46: ...MEMO MEMO MEMO MEMO...
Page 47: ...Authors Dr Yuichi Takeda Research and Development Initiative Chuo University...
Page 48: ......