background image

2-1

SECTION 2.  TEMPERATURE MEASUREMENT

2.1  GENERAL

The vibrating wire probe includes a thermistor
which is used to measure the temperature of
the probe.  Probe temperature is used to correct
errors in the vibrating wire measurement
caused by changes in the temperature of the
probe.  The temperature correction is most
important when the temperature of the medium
the probe is measuring is changing (e.g. water
temperature in a river or shallow lake).  When
concerned with the absolute reading, it is also
important to make the temperature correction if
the medium temperature differs from the
calibration temperature.  In a deep well where
the water temperature does not change, the
error due to temperature can be removed by
allowing the sensor to come to thermal
equilibrium and adjusting the sensor reading to
read the correct depth by means of an offset.

2.2  ACCURACY AND RESOLUTION

The accuracy of the temperature measurement
is a function of the following factors listed in
decreasing importance:  

1)

 the thermistor's

interchangeability,  

2)

 the resistance of the wire,

3)

 the linearization error,  

4)

 the precision of the

bridge resistors,  

5)

 the accuracy of the

datalogger's voltage measurement, and  

6)

 the

temperature coefficient of the bridge resistors.
The interchangeability of the thermistor is

±

0.5

o

C although a thermistor with 

±

0.2

o

C

interchangeability is an option.  The error due to
wire resistance is normally less than 

±

0.5

o

C

(see Figure 2.2-1 through 2.2-4).  The
linearization error is 

±

0.15

ο

C (see Figure 2.2-5)

over the range from -5 to +60

o

C.  The precision

of the bridge resistors (

±

0.1%) results in a

tolerance of 

±

0.03

o

C.  The accuracy of the

datalogger's voltage measurement (

±

0.015%)

results in a tolerance of 

±

0.01

o

C.  The

temperature coefficient of the bridge resistors
(10 ppm/

o

C) results in a tolerance of

±

0.0003

o

C/

o

C.

Errors four, five, and six mentioned above are
all less than 

±

0.03

o

C each and can probably be

ignored.  The wire resistance is primarily an
offset error and its affect on the pressure
measurement is removed by the initial
calibration.  Errors caused by the change in wire
resistance due to temperature, thermistor
interchangeability, and the linearization error are
not removed by the initial calibration.

Ignoring the offset errors, the remaining
temperature accuracy is expected to be about

±

0.7

o

C.  The temperature correction for the

vibrating wire measurement is typically less than
0.05 psi/

o

C.  A 

±

0.7

o

C temperature error would

result in a 0.035 psi (±

1

.0 inch H2O) error on a

50 psi Full Scale range.

The thermistor, Dale Electronics part number
1C3001-B3 is the standard with an
interchangeability of 

±

0.5

o

C.  The optional

thermistor, Dale Electronics part number
1C3001-C3 has an inter-changeability of

±

0.2

o

C.  Both of the above thermistors have the

same resistance vs. temperature relationship as
the YSI thermistor number 44005.

The following table shows the relationship
between temperature and resistance, volts,
CR10 output, and linearization error.

TABLE 2.2-1.  Temperature vs. Thermistor Resistance, V, 

o

C, and Linearization Error

SENSOR

TEMP

RESISTANCE,

VOLTS

CR10

ERROR

o

C     

OHMS            

OUT    

OUTPUT,

o

C

o

C         

 -5

12700

0.668449

-5.09136

-0.09136

 -4

12050

0.692520

-4.02248

-0.02248

 -3

11440

0.716743

-2.98315

0.016846

 -2

10860

0.741399

-1.95557

0.044427

 -1

10310

0.766400

-0.93843

0.061560

Summary of Contents for AVW1

Page 1: ...UCTION MANUAL Use of the AVW1 and AVW4 with Geokon Model 4500 Vibrating Wire Piezometers and Pressure Transducers Revision 1 92 C o p y r i g h t c 1 9 8 7 1 9 9 2 C a m p b e l l S c i e n t i f i c...

Page 2: ...arranties expressed or implied including warranties of merchantability or fitness for a particular purpose CAMPBELL SCIENTIFIC INC is not liable for special indirect incidental or consequential damage...

Page 3: ...EASUREMENT 3 1 General 3 1 3 2 Multiplier and Offset 3 1 3 3 Swept Frequency Start and End 3 2 3 4 Resolution vs of cycles 3 3 3 5 Temperature Correction 3 3 3 6 Delay Between Measurements 3 4 4 THE A...

Page 4: ...Measurement Error on a 3000 Foot Lead 2 4 2 2 4 Temperature Measurement Error on a 5000 Foot Lead 2 5 2 2 5 Thermistor Linearization Error 2 5 2 3 1 Direct Measurement of the Geokon Thermistor 2 6 3 1...

Page 5: ...l Geokon s manual should be consulted for information on sensor selection and installation Geokon s address and phone number are 48 Spencer Street Lebanon NH 03766 603 448 1562 1 1 SENSOR SELECTION Th...

Page 6: ...some cases there is no measured reference In order to obtain the correct offset under these conditions lower the sensor to a point just above the water level and wait 5 minutes Use the multiplier an o...

Page 7: ...o 60oC The precision of the bridge resistors 0 1 results in a tolerance of 0 03oC The accuracy of the datalogger s voltage measurement 0 015 results in a tolerance of 0 01oC The temperature coefficien...

Page 8: ...5785 0 057855 21 3583 1 304393 21 06127 0 061275 22 3426 1 326119 22 06310 0 063105 23 3277 1 347418 23 06048 0 060484 24 3135 1 368363 24 05747 0 057474 25 3000 1 388888 25 05167 0 051679 26 287 1 40...

Page 9: ...53 965 1 794687 53 09674 0 096746 54 929 6 1 803855 54 08849 0 088499 55 895 8 1 812697 55 07032 0 070322 56 863 3 1 821281 56 04819 0 048193 57 832 2 1 829571 57 01651 0 016519 58 802 3 1 837613 57 9...

Page 10: ...4 FIGURE 2 2 2 Temperature Measurement Error on a 1000 foot Lead Wire is 22 AWG with 16 ohms per 1000 feet FIGURE 2 2 3 Temperature Measurement Error on a 3000 foot Lead Wire is 22 AWG with 16 ohms pe...

Page 11: ...AVW1 AVW4 2 5 FIGURE 2 2 4 Temperature Measurement Error on a 5000 foot Lead Wire is 22 AWG with 16 ohms per 1000 feet FIGURE 2 2 5 Thermistor Linearization Error...

Page 12: ...is manual covers AVW1 s with serial number 1093 and up plus serial numbers 1002 1034 1040A 1041 1042 1051 1052 1055 1057 1058 1059 1069 1071 1073 1076 1080 1084 1086 1087 1088 1088A 1089A 1090A 1091A...

Page 13: ...ry short time The wire will vibrate with the resonant frequency for a relatively long period of time and as it does so it will cut the lines of flux in the plucking and pickup coils inducing the same...

Page 14: ...nd on the Calibration Sheet Example Using sensor number 3998 the multiplier offset and equation for pressure would be M 1000 digits kHz2 0 0151 psi digit M 15 1 psi kHz2 B 0 0 psi 0 0151 psi digit 943...

Page 15: ...les timed to determine the period T in ms of the signal being measured The standard deviation is greater when the period is shorter The period is shortest at zero pressure so the Period at zero pressu...

Page 16: ...required they can be done one of two ways With the AVW4 the repetitions parameter must be set to 2 The instructs the CR10 to excite both sensors delay 20 ms measure the first sensor and then measure...

Page 17: ...nches high The silk screening for the AVW1 is shown below FIGURE 4 1 1 The AVW1 4 2 SENSOR HOOK UP FIGURE 4 2 1 Hook up to AVW1 4 3 WELL MONITORING EXAMPLE In this example the vibrating wire sensor is...

Page 18: ...eet The following is a sample program that measures the temperature and frequency of the vibrating wire sensor and stores the temperature oC pressure psi temperature corrected pressure psi correction...

Page 19: ...P37 Z X F 01 4 X Loc T To C 02 0698 F Temp Coeff 03 4 Z Loc T To C 06 P33 Z X Y 01 2 X Loc PRESS psi 02 4 Y Loc T To C 03 3 Z Loc Pt psi 07 P37 Z X F Converts psi to negative ft H20 01 3 X Loc Pt psi...

Page 20: ...AVW1 AVW4 4 4 This is a blank page...

Page 21: ...wire sensors temperature and pressure to eight single ended CR10 channels The AVW4 has no quiescent current drain The current drain during the very short 2 4 ms temperature measurement is 4 mA per ch...

Page 22: ...ometric pressure only and is used to remove atmospheric pressure changes from the readings on the other three sensors This example assumes the sensors have been connected as shown in the sensor hookup...

Page 23: ...09 0698 B4 06 P87 Beginning of Loop TEMPERATURE CORRECTION 01 00 Delay 02 4 Loop Count 07 P34 Z X F ASSUMES CALIBRATION TEMP 24oC 01 1 X Loc TEMP C 1 02 24 F 03 17 Z Loc T To C 1 08 P36 Z X Y 01 13 X...

Page 24: ...AVW1 AVW4 5 4 This is a blank page...

Page 25: ...A 1 APPENDIX A PRESSURE CONVERSION CHART...

Page 26: ...This is a blank page...

Page 27: ...B 1 APPENDIX B SCHEMATICS AND STUFFING CHARTS FOR AVW1 AND AVW4...

Page 28: ...APPENDIX B SCHEMATICS AND STUFFING CHARTS FOR AVW1 AND AVW4 B 2...

Page 29: ...APPENDIX B SCHEMATICS AND STUFFING CHARTS FOR AVW1 AND AVW4 B 3...

Page 30: ...APPENDIX B SCHEMATICS AND STUFFING CHARTS FOR AVW1 AND AVW4 B 4...

Page 31: ...APPENDIX B SCHEMATICS AND STUFFING CHARTS FOR AVW1 AND AVW4 B 5...

Page 32: ...APPENDIX B SCHEMATICS AND STUFFING CHARTS FOR AVW1 AND AVW4 B 6 This is a blank page...

Page 33: ...How many times do we have to change the half period by 1 clock cycle to cover the frequency range 1 F1 2 1 2400 2 208333 ms half period 1 F2 2 1 3100 2 161290 ms half period Change in half period 2083...

Page 34: ...This is a blank page...

Page 35: ...This is a blank page...

Page 36: ...campbellsci com br suporte campbellsci com br Campbell Scientific Canada Corp CSC 11564 149th Street NW Edmonton Alberta T5M 1W7 CANADA www campbellsci ca dataloggers campbellsci ca Campbell Scientifi...

Reviews: