background image

4WPB100, 4WPB1K PRT Bridge Terminal Input Modules 

The RTD Instruction (16) computes the temperature (

°

C) for a DIN 43760 

standard PRT from the ratio of the PRT resistance at the temperature being 
measured (R

s

) to its resistance at 0

°

C (R

0

).  Thus, a multiplier of R

f

/R

0

 is used 

with the 4 wire half bridge instruction to obtain the desired intermediate, R

s

/R

0

 

= (R

s

/R

f

 x R

f

/R

o

).  If R

f

 and R

0

 are equal, the multiplier is 1. 

The fixed resistor must be thermally stable. The 4 ppm/

°

C temperature 

coefficient would result in a maximum error of 0.05 

°

C at 60 

°

C. The 8 

ppm/

°

C temperature coefficient would result in a maximum error of 0.33 

°

C at 

125 

°

C.  Because the measurement is ratiometric (R

s

/R

f

) and does not rely on 

the absolute values of either R

s

 or R

f

, the properties of the 10 kOhm resistor do 

not affect the result. 

5.1  Excitation Voltage 

The best resolution is obtained when the excitation voltage is large enough to 
cause the signal voltage to fill the measurement voltage range. The voltage 
drop across the PRT is equal to the current, I, multiplied by the resistance of 
the PRT, R

s

, and is greatest when R

s

 is greatest.  For example, if it is desired to 

measure a temperature in the range of -10 to 40

°

C, the maximum voltage drop 

will be at 40

°

C when R

s

=115.54 Ohms.  To find the maximum excitation 

voltage that can be used when the measurement range is ±25 mV, we assume 
V

2

 equal to 25 mV and use Ohm's Law to solve for the resulting current, I. 

I = 25 mV/R

s

 = 25 mV/115.54 Ohms  

= 0.216 mA 

V

x

 is equal to I multiplied by the total resistance: 

V

x

 = I(R

1

+R

s

+R

f

) = 2.21 V 

If the actual resistances were the nominal values, the 25 mV range would not 
be exceeded with V

x

 = 2.2 V.  To allow for the tolerances in the actual 

resistances, it is decided to set V

x

 equal to 2.1 volts (e.g., if the 10 kOhm 

resistor is 5% low, then R

s

/(R

1

+R

s

+R

f

)=115.54/9715.54, and V

x

 must be 2.102 

V to keep V

s

 less than 25 mV). 

5.2  Calibrating a PRT 

The greatest source of error in a PRT is likely to be that the resistance at 0 

°

deviates from the nominal value.  Calibrating the PRT in an ice bath can 
correct this offset and any offset in the fixed resistor in the Terminal Input 
Module. 

The result of the 4 wire half bridge is: 

V

V

I R

I R

R

R

s

f

s

f

2

1

=

=

 

Summary of Contents for 4WPB100

Page 1: ...4WPB100 4WPB1K PRT Bridge Terminal Input Modules Revision 12 06 C o p y r i g h t 1 9 9 6 2 0 0 6 C a m p b e l l S c i e n t i f i c I n c H L A G H L A G H L G...

Page 2: ...ieu of all other warranties expressed or implied including warranties of merchantability or fitness for a particular purpose CAMPBELL SCIENTIFIC INC is not liable for special indirect incidental or co...

Page 3: ...4 CR9000X 6 4 5 CR1000 7 5 PRT in 4 Wire Half Bridge 7 5 1 Excitation Voltage 8 5 2 Calibrating a PRT 8 Figures 1 1 Terminal Input Module 1 2 1 Circuit Schematic 2 3 1 Wiring for Example Programs 2 T...

Page 4: ...This is a blank page...

Page 5: ...t shunts The 4WPB100 and 4WPB1K are used to provide completion resistors for 4 wire half bridge measurements of 100 Ohm and 1 killohm Platinum Resistance Thermometer PRT respectively H L A G H L A G H...

Page 6: ...4 wire half bridge measurements the 4WPB is connected to a differential channel and the sense leads from the PRT to the next differential channel The black excitation wire is connected to the excitati...

Page 7: ...ot set to the maximum input range it becomes a four wire half bridge measurement All the examples are for a 100 Ohm PRT in the 4WPB100 The excitation voltages used were chosen with the assumption that...

Page 8: ...put Range CR9000X 250 mV Input Range CR10 X CR1000 CR800 CR850 500 mV Input Range 21X CR7 CR3000 50 1194 1959 2448 4897 100 1385 1716 2145 4291 150 1573 1 1535 1919 3837 200 1758 4 1394 1743 3486 250...

Page 9: ...mV Excitation 7 1 Loc Rs_Ro 8 1 0 Mult 9 0 Offset 02 Temperature RTD P16 1 1 Reps 2 1 R Ro Loc Rs_Ro 3 2 Loc Temp_C 4 1 Mult 5 0 Offset 4 2 21X 1 Full Bridge w mv Excit P9 1 1 Reps 2 3 50 mV Slow Ex...

Page 10: ...Excitation 10 1 Loc Rs_Ro 11 1 0 Mult 12 0 0 Offset 2 Temperature RTD P16 1 1 Reps 2 1 R RO Loc Rs_Ro 3 2 Loc Temp_C 4 1 0 Mult 5 0 0 Offset 4 4 CR9000X CR9000X Datalogger Public Rs_Ro Temp_F DataTab...

Page 11: ...and a separate set of sense wires that allow the voltage across the PRT to be measured without the effect of any voltage drop in the excitation leads Figure 2 1 shows the circuit used to measure the...

Page 12: ...PRT is equal to the current I multiplied by the resistance of the PRT Rs and is greatest when Rs is greatest For example if it is desired to measure a temperature in the range of 10 to 40 C the maxim...

Page 13: ...o perform the calibration connect the PRT to the datalogger and program the datalogger to measure the PRT with the 4 wire half bridge as shown in the example section multiplier 1 Place the PRT in an i...

Page 14: ...4WPB100 4WPB1K PRT Bridge Terminal Input Modules 10 This is a blank page...

Page 15: ...This is a blank page...

Page 16: ...campbellsci com br suporte campbellsci com br Campbell Scientific Canada Corp CSC 11564 149th Street NW Edmonton Alberta T5M 1W7 CANADA www campbellsci ca dataloggers campbellsci ca Campbell Scientif...

Reviews: