background image

Wraptor™ User Manual 

[email protected] 

www.barrett.com

 

© 2007 Barrett Technology®, Inc. 

Document: D2000, Version: AB.00 

Page 6 of 15

 

 

2  Safety and Cautions 

PLEASE READ THIS SECTION IN ITS ENTIRETY BEFORE USING YOUR WRAPTOR™. 

 

Following these safety instructions will help prevent user injury and equipment damage. 

 

2.1  Human Safety 

 

The Wraptor™ has been designed to apply human-scale maximum active forces of several kilograms even though the 

Wraptor™ is designed to lift 50 kg once the fingers have secured their grasp.  HOWEVER, the safety of the Wraptor™ 

is limited by the system safety, including the arm, which may be capable of tons of force.  If the arm that transports the 

Wraptor™ is able to move, then the end user must be aware that the Wraptor™ is capable of (and will) transmit the 

arm’s end forces directly to people and delicate equipment.  If an articulated robotic arm is rated for 50 kg, for example, 

it is likely to be able to produce many tons of force in many leveraged configurations or when it is moving fast upon an 

impact. 

 

Beware of situations when the Wraptor™ is stationary and secured on the end of a high-payload robot, but there is other 

active moving equipment nearby.  The Wraptor™ generally will not accommodate and reduce the force of any collision, 

if it occurs. 

 

Do not place any part of your body or delicate objects within the grasp of the Wraptor™ without first verifying control 

of the unit and confirming appropriate force levels.   

 

Beware that the sharp finger-nail like claws attached nominally to the outer links can cause pain and possibly cut bare 

human skin depending on details of the grasp. 

 

2.2  Wraptor Safety 

 

Do not connect or disconnect any electrical cables while the Power Supply is turned on.  Failure to follow this instruction 

could impart irreparable damage to the onboard electronics.  

 

Ensure that input power to the Positive- and Negative-voltage terminals are never reversed. 

 

Never allow power to be connected to the communication pins at the input connector of the Wraptor 

 

Do not exceed the load limit of the fingers, 50kg per finger.  Consider all loading situations including accelerated loads, 

cantilever loads from long objects, robot collisions, active loads, etc.  (See also, next paragraph.) 

 

Similar to the concerns about Human safety when the Wraptor™ is mounted on a robotic arm, one must recognize that, 

for example, a 50-kg lift robotic arm is easily capable of producing several tons (!!!) of force even when moving slowly 

(in many configurations with high mechanical leverage) or when moving quickly just before a collision (regardless of 

configuration).  Since forces cannot be seen by eye, any contact with rigid surfaces or even with the base or other links of 

the robotic arm can easily exceed tons of force without operator awareness.  It is advisable to be very cautious when 

running the full system to minimize these collisions or to ensure that a force/torque sensor or collision-break-away 

mechanism is installed between the tool-plate of the robot and the base of the Wraptor™.   

 

Do not allow the Wraptor™ to be exposed to corrosive liquids that may cause damage to the body or cable of the unit. 

 

The operating temperature of the Wraptor™ is monitored continuously and automatically so that no Puck can approach 

OTEMP, which is set nominally to 82 C.  If the temperature reaches within 16C of OTEMP, then the max command 

torque (motor current) will be temporarily limited to prevent damage.  Under normal conditions, the Wraptor™ operates 

between 35 and 60C.  The Wraptor™ was designed with non-backdrivable finger joints to take advantage of the motors’ 

peak operating performance in short bursts.  The spread, however, is backdrivable to aid in target-independent grasping 

and requires constant motor current to actively hold position.  Idling the spread motor (thus activating the spread brake), 

when possible, will help keep the temperature lower. 

 

Do not immerse the Wraptor™ in liquid. 

 

Do not expose the Wraptor™ to corrosive liquids. 

 

Do not expose the Wraptor™ to mud or slurries. 

 

Ensure that the electrical Wraptor™ cable and connector cannot be damaged by collision, cutting, pulling, or twisting. 

Summary of Contents for Wraptor BH8-610 Series

Page 1: ...Wraptor BH8 610 Series User Manual Document D2000 Version AB 00 ...

Page 2: ...n ratios 4 1 4 3 Brushless Motors 4 1 5 Theory of Operation 5 1 6 Control Software 5 1 7 C Function Library 5 1 8 Control Software Firmware Upgrades 5 2 Safety and Cautions 6 2 1 Human Safety 6 2 2 Wraptor Safety 6 3 Initial Setup and Walk through 7 4 Supervisory Control 8 4 1 Commands 8 4 1 1 Movement Commands 9 4 1 2 Motor Parameter Commands 10 4 1 3 Administrative Commands 11 4 2 Parameters 11 ...

Page 3: ... dexterity does not compromise arm payload Its low mass and short base to grasp center distance minimize joint loading on the host robot and reduce extraneous arm movements during object reorientation The custom control electronics package is contained entirely within the Wraptor reducing electrical wiring to a single cable carrying only Ethernet communications and DC power We hope that you enjoy ...

Page 4: ...tage requirements 48V 2 Current requirements 5A Min 15A Typ 50A Max Load limits 50kg finger Operating temperature limits 0 to 70 degrees C internal Storage temperature limits 25 to 95 degrees C non condensing Environmentally sealed IP 65 Figure 2 Mechanical schematic of Wraptor Table 1 Joint Ranges Inner Link Outer Link Spread Min 5 500 35 000 0 GCL Counts Max 72 000 79 000 37 000 Min 10 80 0 Degr...

Page 5: ... thus less inherent friction they achieve a better torque mass ratio than typical brushed servos There is also no need to replace worn brushes after the motors have been in service over a period of time The following table shows Wraptor motor properties Table 3 Wraptor Motor Properties Parameter Value Number of Phases 3 Number of Magnetic Poles 6 Rotor Magnet Material Highest Grade Neodymium Rare ...

Page 6: ...nt over the serial port and interpreted by the Wraptor 2 Ethernet Communication Simple ASCII based commands are sent over an Ethernet network and interpreted by the Wraptor 3 CAN Communication High speed pre compiled commands are sent directly to the motors of the Wraptor eliminating the need for an interpreter and allowing absolute control of each motor 1 7 C Function Library The Wraptor C Functi...

Page 7: ...nication pins at the input connector of the Wraptor Do not exceed the load limit of the fingers 50kg per finger Consider all loading situations including accelerated loads cantilever loads from long objects robot collisions active loads etc See also next paragraph Similar to the concerns about Human safety when the Wraptor is mounted on a robotic arm one must recognize that for example a 50 kg lif...

Page 8: ...ollowed by pressing Enter b Note All commands are case insensitive and all white space is optional 8 Get the initial temperature of the inner joint motors Type 123 GET TEMP a Note 123 GET TEMP is read as Motors 1 2 and 3 Get your TEMPerature b Note The Wraptor should return with its inner joint temperatures in degrees C 9 Move the fingers to position 20000 123 M 20000 a Note 123 M 20000 is read as...

Page 9: ...minated by a carriage return character 0x0d Once the firmware receives the carriage return it processes the line executes the command and then prints a new prompt Once a command has been started no configuration changes can be made until the command has completed Many of the commands take one or more parameters space characters should separate these from the command and each other The command synt...

Page 10: ...e selected motor controller s preparing them for use by other movement commands Arguments none Example HI Notes HI must be run before any other movement command Generally it is run without a motor prefix initializing all four motors although if desired a subset of the motors can be specified After an HI all motors are in their home position at 0 encoder counts Command HOME Name Home Purpose Moves ...

Page 11: ...Does not check for hitting joint limits Torque is applied until a new torque is applied or a different movement command is issued Use caution when issued with a high MT there is no velocity limit imposed during a torque move Command TO Name Torque Controlled Open Purpose Sets the torque of selected motor s to MT Arguments none Example STO Notes Does not check for hitting joint limits Torque is app...

Page 12: ...m for FSAVE Command FDEF Name Finger Default Purpose Sets the parameters of the selected motor s back to their factory default values Arguments none Example SFDEF Notes Does not save the changed values to non volatile storage DEF is a synonym for FDEF 4 1 3 Administrative Commands Administrative commands implement various housekeeping functions Command RESET Name Reset Purpose Resets the controlle...

Page 13: ...a negative number is allowed but it is not recommended Doing so would make the finger move in the open direction during an IC Incremental Close command for example Parameter MT Name Max Torque Purpose Maximum torque to apply during any joint movement Values 32768 to 32 767 mA roughly Default 6000 Notes It is useful to set this parameter before issuing a TC TO or M command Parameter MV Name Max Vel...

Page 14: ...ner Link 100 Outer Link 100 Spread 10 Notes While the ACCEL parameter has a rather large range of values that it can accept the motor can only follow a small subset of those values In general the useful range is from 0 to approx 60 Above 60 the motors cannot provide enough torque to accelerate that quickly The units for acceleration is defined as 256 GCL Counts ms ms So ACCEL 10 yields 10 256 cts ...

Page 15: ...ned as the joint s zero position This parameter s true range of useful values is bounded by the joint limits of the axes see Table 1 Joint limits Parameter KD Name Derivative Gain Purpose The difference between the previous position error and the present position error is multiplied by this gain to obtain the derivative component of the generated command torque Values 32768 to 32 767 Default Inner...

Page 16: ...Controls the serial port baud rate Values 300 1200 2400 9600 19200 28800 Default 9600 Notes If you change BAUD you will need to change the baud rate at which the Tibbo Ethernet device server communicates with the primary Wraptor controller Changes to BAUD are not saved between power cycles Parameter OTEMP Name OverTemperature Purpose When the controller temperature comes within 16 C of OTEMP MT is...

Reviews: