178
11054A–ATARM–27-Jul-11
SAM9X25
178
11054A–ATARM–27-Jul-11
SAM9X25
16 periods of Slow Clock, so that the frequency of the 12 MHz Fast RC Oscillator or 3 to 20 MHz
Crystal Oscillator can be determined.
21.7
Divider and PLLA Block
The PLLA embeds an input divider to increase the accuracy of the resulting clock signals. How-
ever, the user must respect the PLLA minimum input frequency when programming the divider.
shows the block diagram of the divider and PLLA block.
Figure 21-6.
Divider and PLLA Block Diagram
21.7.1
Divider and Phase Lock Loop Programming
The divider can be set between 1 and 255 in steps of 1. When a divider field (DIV) is set to 0, the
output of the corresponding divider and the PLL output is a continuous signal at level 0. On
reset, each DIV field is set to 0, thus the corresponding PLL input clock is set to 0.
The PLLA allows multiplication of the divider’s outputs. The PLLA clock signal has a frequency
that depends on the respective source signal frequency and on the parameters DIVA and
MULA. The factor applied to the source signal frequency is (MULA + 1)/DIVA. When MULA is
written to 0, the PLLA is disabled and its power consumption is saved. Re-enabling the PLLA
can be performed by writing a value higher than 0 in the MUL field.
Whenever the PLLA is re-enabled or one of its parameters is changed, the LOCKA bit in
PMC_SR is automatically cleared. The values written in the PLLACOUNT field in CKGR_PLLAR
are loaded in the PLLA counter. The PLLA counter then decrements at the speed of the Slow
Clock until it reaches 0. At this time, the LOCK bit is set in PMC_SR and can trigger an interrupt
to the processor. The user has to load the number of Slow Clock cycles required to cover the
PLLA transient time into the PLLACOUNT field.
The PLLA clock can be divided by 2 by writing the PLLADIV2 bit in PMC_MCKR register.
21.8
UTMI Phase Lock Loop Programming
The source clock of the UTMI PLL is the Main Clock MAINCK. When the 12 MHz Fast RC Oscil-
lator is selected as the source of MAINCK, the 12 MHz frequency must also be selected
because the UTMI PLL multiplier contains a built-in multiplier of x 40 to obtain the USB High
Speed 480 MHz.
A 12 MHz crystal is needed to use the USB.
Divider
DIVA
PLLA
MULA
PLLACOUNT
LOCKA
OUTA
SLCK
MAINCK
PLLACK
PLLA
Counter
Summary of Contents for SAM9X25
Page 26: ...26 11054A ATARM 27 Jul 11 SAM9X25...
Page 138: ...138 11054A ATARM 27 Jul 11 SAM9X25 138 11054A ATARM 27 Jul 11 SAM9X25...
Page 162: ...162 11054A ATARM 27 Jul 11 SAM9X25 162 11054A ATARM 27 Jul 11 SAM9X25...
Page 216: ...216 11054A ATARM 27 Jul 11 SAM9X25 216 11054A ATARM 27 Jul 11 SAM9X25...
Page 266: ...266 11054A ATARM 27 Jul 11 SAM9X25 266 11054A ATARM 27 Jul 11 SAM9X25...
Page 330: ...330 11054A ATARM 27 Jul 11 SAM9X25 330 11054A ATARM 27 Jul 11 SAM9X25...
Page 374: ...374 11054A ATARM 27 Jul 11 SAM9X25...
Page 468: ...468 11054A ATARM 27 Jul 11 SAM9X25 468 11054A ATARM 27 Jul 11 SAM9X25...
Page 532: ...532 11054A ATARM 27 Jul 11 SAM9X25 532 11054A ATARM 27 Jul 11 SAM9X25...
Page 692: ...692 11054A ATARM 27 Jul 11 SAM9X25 692 11054A ATARM 27 Jul 11 SAM9X25...
Page 777: ...777 11054A ATARM 27 Jul 11 SAM9X25 777 11054A ATARM 27 Jul 11 SAM9X25...
Page 886: ...886 11054A ATARM 27 Jul 11 SAM9X25 886 11054A ATARM 27 Jul 11 SAM9X25...
Page 962: ...962 11054A ATARM 27 Jul 11 SAM9X25 962 11054A ATARM 27 Jul 11 SAM9X25...
Page 1036: ...1036 11054A ATARM 27 Jul 11 SAM9X25 1036 11054A ATARM 27 Jul 11 SAM9X25...
Page 1128: ...1128 11054A ATARM 27 Jul 11 SAM9X25 1128 11054A ATARM 27 Jul 11 SAM9X25...
Page 1130: ...1130 11054A ATARM 27 Jul 11 SAM9X25...
Page 1132: ...1132 11054A ATARM 27 Jul 11 SAM9X25...
Page 1144: ...xii 11054A ATARM 27 Jul 11 SAM9X25...