background image

 

AVR Hardware Design Considerations [APPLICATION NOTE]   

Atmel-2521M-AVR-Hardware-Design-Considerations_ApplicationNote_092014 

 

12 

(B) is the circuit used for low frequency crystals on some AVRs - to be more specific - optimized for 32.768kHz 

crystals. This circuit provides the capacitive load required by the crystal internally and further adds the resistor Rb 

to bias the crystal and limit the drive current into the crystal. The resistor Rf is, when using CMOS inverters, 

approximately 1MΩ, and provides a feedback to bias the inverter to operate it in its linear region. Consult data 

sheet for the relevant device to see if it has internal circuitry for low frequency crystals. 
When using resonators with the Atmel AVR, it is necessary to apply (external) capacitors according to the 

requirements of the facilitated resonator. A parallel resonator will not be able to oscillate stable if the capacitive 

load applied is insufficient. If the capacitive load is too high the oscillation may have problems starting due to 

drive level dependency of the load. The trick is therefore to find an appropriate value for the capacitive load. The 

value to look for in the data sheet of the crystal is CL, the recommended capacitive load of the resonator (viewed 

from the terminals of the resonator). The capacitive load, CL, of the oscillator circuit, including stray capacitances 

and the capacitances of the XTAL pins of the AVR can be determined empirically or it can be estimated by 

Equation 4-1

Equation 4-1. 

 

'

2

'

1

'

2

'

1

L

L

L

L

L

C

C

C

C

C

+

=

 

S

L

L

L

S

L

L

L

C

C

C

C

C

C

2

2

'

2

1

1

'

1

+

=

+

=

 

 
Where C

L1

 and C

L2

 refer to the external capacitors seen in 

Figure 4-1

 and C

L1S

 and C

L2S

 are stray capacitances at 

the XTAL pins of the AVR. Assuming symmetric layout, so that C

L1

 = C

L2

 = C and C

L1S

 = C

L2S

 = C

S

, then the 

external capacitors can be determined by 

Equation 4-2

 (C

S

 can be estimated to be 5pF - 10pF): 

Equation 4-2. 

 

S

L

C

C

C

=

2

 

4.3  Recommended Capacitor Values 

The recommendations here will work well in most applications, but there is no way to provide general values for 

the external capacitors that can be guaranteed to work with all resonators. 
When using the clock option “ext. crystal oscillator”, crystals with a nominal frequency from 400kHz and up can 

be used. For these standard “high” frequency crystals the recommended capacitor value is in the range 22pF - 

33pF. 
The clock option “ext. low frequency crystal” is intended for 32.768kHz crystals. When selecting this clock source 

the internal oscillator circuit might provide the required capacitive load. By programming the CKOPT Fuse, the 

user can enable internal capacitors on XTAL1 and XTAL2. The value of the internal capacitors is typical 20pF, 

but can vary. If using a 32.768kHz crystal that does not require more load than this, external capacitors can be 

left out. Otherwise external capacitive load must be added. In this case the capacitive load value, given by the 

manufacturer of the crystal, should be used. Then the value of the external capacitors can be determined by 

Equation 4-2

. The CKOPT Fuse should not be programmed when using external capacitors. 

Refer to the datasheet to assure whether the device has internal capacitors or not. Note that Atmel AT90S8535, 

Atmega163, and Atmega103 do not have the CKOPT-fuse; instead they have dedicated pins (TOSC1-TOSC2), 

to connect the 32.768kHz watch crystal to. 
Using the clock option that selects “ext. ceramic resonator” it is strongly recommended to consult the datasheet 

to determine the capacitors to apply. Always use the capacitive load recommended there since the resonant 

frequency of the ceramic resonators is very sensitive to capacitive load. 

Summary of Contents for AVR042

Page 1: ...on to potential design problems rather than being an exhaustive walk through of how to design applications using the AVR microcontrollers This document is thus a collection of information from existin...

Page 2: ...SPI Programming Interface 6 3 1 1 Shared Use of SPI Programming Lines 7 3 2 JTAG Interface 7 3 2 1 Shared Use of JTAG Lines 8 3 3 PDI Interface 9 3 3 1 External Reset Circuitry 9 3 4 TPI Interface 10...

Page 3: ...tor Figure 1 1 Incorrect Decoupling Figure 1 1 shows an example of insufficient decoupling The capacitor is placed too far away from the microcontroller creating a large high current loop The power an...

Page 4: ...n the same manner as the digital supply voltage AREF must also be decoupled a typical value for the capacitor is 100nF If a separate analog ground AGND is present the analog ground should be separated...

Page 5: ...since this is not internally provided due to High Voltage Programming Alternatively or in addition a Zener diode can be used to limit the RESET voltage relative to GND The Zener diode is highly recomm...

Page 6: ...Tools help for further information on which interfaces are supported by the device and how to connect the programming tool 3 1 SPI Programming Interface On devices that use a Serial Peripheral Interfa...

Page 7: ...d to have only one ISP interface on the target board the ISP programming can be designed so that only one of the AVR devices is provided with a SPI clock at a time All other SPI lines can then be shar...

Page 8: ...inciple is shown in Figure 3 4 and is explained in further detail in the AVR Tools help file Figure 3 4 JTAG Daisy Chain Protection resistors as shown in Figure 3 2 are necessary if the JTAG lines are...

Page 9: ...h Atmel programmers Only two pins on the device are needed for use of this interface RESET also called PDI_CLK and the dedicated PDI_DATA pin The target s voltage supply is made available to allow for...

Page 10: ...e to the fact that the use of these clock sources is not well understood This section therefore treats the topic of using crystals and ceramic resonators in relation to Atmel AVR MCUs The description...

Page 11: ...s refer to both devices Table 4 1 Style tt table title Ceramic Resonator Quartz Crystal Aging 3000ppm 10ppm Frequency tolerance 2000 5000ppm 20ppm Frequency temperature characteristics 20 50ppm C 0 5p...

Page 12: ...symmetric layout so that CL1 CL2 C and CL1S CL2S CS then the external capacitors can be determined by Equation 4 2 CS can be estimated to be 5pF 10pF Equation 4 2 S L C C C 2 4 3 Recommended Capacito...

Page 13: ...counter can through this feature be used for real time functions A 32 768kHz crystal should then be connected to the TOSCx pins of the AVR In some AVRs the internal oscillator circuit used with the re...

Page 14: ...derations APPLICATION NOTE Atmel 2521M AVR Hardware Design Considerations_ApplicationNote_092014 14 Figure 5 1 A Basic Schematic of Required Recommended Connections for ATxmega32A4 B Copper PCB Layout...

Page 15: ...AVR Hardware Design Considerations APPLICATION NOTE Atmel 2521M AVR Hardware Design Considerations_ApplicationNote_092014 15 B C...

Page 16: ...AVR Hardware Design Considerations_ApplicationNote_092014 16 6 Revision History Doc Rev Date Comments 2521M 09 2014 Fixed some typos in Section 2 1 2521L 07 2013 Updated the diagram of Filters on JTA...

Page 17: ...NESS INTERRUPTION OR LOSS OF INFORMATION ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES Atmel makes no representations or wa...

Reviews: