background image

3

DEMO MANUAL DC2611A

Rev. 0

DC2611A RECONFIGURATION

The following covers the hardware reconfiguration of the 

DC2611A. Refer to LTC6955 data sheet for a better under-

standing of device specific considerations.

Power Supply Options

Table 2 provides the power supply options for DC2611A. 

By default the DC2611A is setup to use the single supply 

option. However, a dual supply option is available to power 

the higher current supply from our Silent Switcher, such 

as the LT8609S. The Silent Switcher improves the power 

efficiency over the low noise LDO. A spurious free supply, 

such as a low noise LDO, is required on the LTC6955’s 

V

IN

+

 supply pin.

Table 2. Power Supply Options

Power Supply Voltage/Current 

(Recommended Supply)

DEFAULT OPTION

R18

J27 (3.3V)

E10 (VIN33)

x

Single 

Supply

Installed

3.3V/750mA 

(Low Noise LDO)

NA

Dual 

Supply

Do Not 

Install

3.3V/750mA 

(Silent Switcher)

3.3V/150mA 

(Low Noise LDO)

Input Termination Options

Table 3 provides the single-ended and differential input 

termination options. By default the DC2611A is setup for 

a single-ended input on the IN– SMA (J25). For best per-

formance different termination networks are provided for 

input signals <5GHz and input signals >5GHz.

LTC6955-1 Divide by Two Coupling Spur

To help reduce the LTC6955-1’s OUT10 /2 coupling spur 

to other outputs a ferrite bead (FB1) should be installed 

on the OUT10 supply pin, VOUT+ (Pin 5). For the LTC6955 

FB1 should be a 0Ω resistor.

CML Outputs, OUT[10:0]

The DC2611A has 11 CML outputs. Six of these outputs 

are AC-coupled and brought out to SMAs (OUT10, OUT8, 

OUT6, OUT4, OUT1 or OUT0). To drive 50Ω impedance 

instruments connect OUTx+ to the instrument and OUTx– 

to a 50Ω termination, or vice versa.
The remaining five outputs (OUT9, OUT7, OUT5, OUT3, 

and OUT2) are terminated with a 100Ω resistor on board. 

To connect these outputs to a 50Ω instrument, remove 

the 100Ω termination, and install the appropriate SMAs 

and AC blocking capacitors.
Refer to LTC6955 data sheet for differential termination 

options.

Alternate Configuration Options

To take advantage of the LTC6955’s maximum output 

frequency and ultralow output additive phase noise, 

the  DC2611A (LTC6955,  LTC6955-1), the DC2609A 

(LTC6952) and the VCO rider board (DC2664A) were 

designed to mate directly together, as shown in Figure 2

This setup allows for options to lock the LTC6952 refer-

ence input to:
A) A <7.5GHz VCO and LTC6955-1 output frequency, by 

utilizing the LTC6955-1 divide by two output on OUT10 

to drive the LTC6952 VCO input. (refer to Figure 2)

B) Any VCO and create lower jitter clocks from a LTC6955 

or  LTC6955-1 output than a standalone LTC6952 

produces.

Refer to the LTC6952 and LTC6955 data sheet’s typical 

application for measured results. Refer to the DC2664A 

demo manual for recommendation on loop filter compo-

nent placement.

Table 3. Input Termination Options (*)

DEFAULT

TERMINATION

R8 (Ω)

R9 

(Ω)

R10 (Ω) R11 (Ω) R19 (Ω) R20 (Ω)

C58

C59

C60

C61

DC2611A-A

SE, IN–, <5GHz

75

DNI

30

DNI

DNI

DNI

0.1uF

0.1uF

DNI

0.1uF

DC2611A-B

SE, IN–, ≥5GHz

DNI

DNI

DNI

1nH

DNI

49.9

DNI

1pF

1pF

DNI

SE, IN+, <5GHz

30

DNI

75

DNI

DNI

DNI

0.1uF

DNI

0.1uF

0.1uF

SE, IN+, ≥5GHz

DNI

DNI

DNI

1nH

49.9

DNI

DNI

1pF

1pF

DNI

DIFF, CML or PECL, <5GHz

DNI

160

DNI

DNI

DNI

DNI

DNI

0.1uF

0.1uF

DNI

DIFF, CML or PECL, ≥5GHz

DNI

DNI

DNI

1nH

DNI

DNI

DNI

1pF

1pF

DNI

DIFF, LVDS

DNI

DNI

DNI

160

DNI

DNI

DNI

0.1uF

0.1uF

DNI

*SE = Single-Ended, DIFF = Differential, DNI = Do Not Install

Summary of Contents for LTC6955

Page 1: ...ks are the property of their respective owners making them suitable to drive 50Ω impedance instru ments The remaining four differential outputs are termi nated with 100Ω A calibration path is provided to aid in accurate LTC6955 propagation delay measurements The calibration path can be also reconfigured as a DC path which allows for a convenient method of locking the LTC6955 outputs to an external...

Page 2: ...cture are known to generate spurs on low jitter clock outputs 2 For poor phase noise results verify the phase noise specifications of the input signal and the phase noise measurement instrument Traditional signal sources and spectrum analyzers have higher phase noise than the LTC6955 and will degrade measurement results To measure phase noise performance it is recommended to use a low jitter oscil...

Page 3: ...Ω impedance instruments connect OUTx to the instrument and OUTx to a 50Ω termination or vice versa The remaining five outputs OUT9 OUT7 OUT5 OUT3 and OUT2 are terminated with a 100Ω resistor on board To connect these outputs to a 50Ω instrument remove the 100Ω termination and install the appropriate SMAs and AC blocking capacitors Refer to LTC6955 data sheet for differential termination options Al...

Page 4: ...4 DEMO MANUAL DC2611A Rev 0 Change C56 C57 to 0 ohm resistors DC2611A RECONFIGURATION Figure 2 Alternate Configuration Locking LTC6955 Outputs to an External PLL VCO ...

Page 5: ...OUT1 OUT1 J11 and J12 SMA Connectors OUT0 OUT0 J9 and J10 SMA Connectors OUT9 OUT9 Two Outputs Not Connected J3 and J4 SMA Not Populated On board differential 100Ω termination OUT7 OUT7 J7 and J8 SMA Not Populated OUT5 OUT5 J19 and J20 SMA Not Populated OUT3 OUT3 J15 and J16 SMA Not Populated OUT2 OUT2 J13 and J14 SMA Not Populated IN Input Not Connected J26 SMA Connector Default Not connected see...

Page 6: ...6 DEMO MANUAL DC2611A Rev 0 PCB LAYOUT Top Layer ...

Page 7: ...0 8 1 JP1 CONN HEADER MALE 1X3 2mm THT WURTH ELEKTRONIK 62000311121 9 16 J1 J2 J5 J6 J9 J12 J17 J18 J21 J26 CONN SMA 50Ω EDGE LAUNCH CON SMA R CCSJ 142 0701 851 10 0 J3 J4 J7 J8 J13 J16 J19 J20 CONN SMA 50Ω EDGE LAUNCH CON SMA R OPT 11 2 J27 J28 CONN JACK BANANA KEYSTONE 575 4 12 2 R1 R2 RES CHIP 10k 1 10W 1 0402 VISHAY CRCW040210K0FKED 13 1 R3 RES CHIP 100k 1 10W 1 0402 VISHAY CRCW0402100KFKED 14...

Page 8: ...R10 RES CHIP 30Ω 1 16W 1 0402 VISHAY CRCW040230R0FKED 8 1 U1 I C ULTRALOW JITTER 11 OUTPUT FANOUT BUFFER QFN52UKG 7X8 LINEAR TECH LTC6955IUKG DC2611A3 B Required Circuit Components 1 1 DC2611A3 GENERAL BOM 2 0 C58 C61 CAP 0402 OPT 3 2 C59 C60 CAP C0G 1pF 50V 10 0402 MURATA GJM1555C1H1R0CB01 4 1 FB1 IND 47ΩS AT 100MHz FERRITE BEAD 0201 TDK MMZ0603D470ET000 5 0 R8 R9 R10 R19 RES 0402 OPT 6 1 R11 IND...

Page 9: ...NOTICE LINEAR TECHNOLOGY HAS MADE A BEST EFFORT TO DESIGN A CIRCUIT THAT MEETS CUSTOMER SUPPLIED SPECIFICATIONS HOWEVER IT REMAINS THE CUSTOMER S RESPONSIBILITY TO VERIFY PROPER AND RELIABLE OPERATION IN THE ACTUAL APPLICATION COMPONENT SUBSTITUTION AND PRINTED CIRCUIT BOARD LAYOUT MAY SIGNIFICANTLY AFFECT CIRCUIT PERFORMANCE OR RELIABILITY CONTACT LINEAR TECHNOLOGY APPLICATIONS ENGINEERING FOR AS...

Page 10: ...disclose or transfer any portion of the Evaluation Board to any other party for any reason Upon discontinuation of use of the Evaluation Board or termination of this Agreement Customer agrees to promptly return the Evaluation Board to ADI ADDITIONAL RESTRICTIONS Customer may not disassemble decompile or reverse engineer chips on the Evaluation Board Customer shall inform ADI of any occurred damage...

Reviews: