background image

UG-702 

ADA2200-EVALZ User Guide 

The center frequency of the filter is located at 1/64 of the clock 
frequency. As shown in Table 3, this is equivalent to 1/4 of the 
Nyquist frequency of the output rate. With the on-board 400 kHz 
oscillator, this center frequency is located at 6.25 kHz. 
The filter transfer function scales with the input clock frequency. 
Valid input clock frequencies range from 10 kHz to 1 MHz. 
Sweeping the input clock frequency in this range sweeps the 
filter center frequency from 156.25 Hz to 15.625 kHz. The filter 
Q remains constant at 1.7 for any CLKIN frequency.  
Connect Pin 1 and Pin 2 on P13 to use an external clock with 
the device. 

Programming Different Filter Configurations 

If the desired filter is different from the default definition, the 

ADA2200

 must boot from an EEPROM previously programmed 

with valid contents for all the user registers. For additional details 
on how to boot from EEPROM, refer to the Programming the 

ADA2200 

section.  

For information on programming the EEPROM with a different 
filter function, contac

technical support

 

SIGNAL MEASUREMENTS 

The signal present at the output of th

ADA2200

 depends on 

the amplitude and phase (relative to the reference clock) of the 
signal applied at its inputs. When either the amplitude or phase 
is known and constant, any output variations can be attributed 
to the modulated parameter.  
This dependence is shown in Figure 4. In any of these cases, 
the 

ADA2200

 is performing either amplitude or phase 

demodulation. 

0

0

180

0

180

0

A

MPL

IT

U

D

E (V)

PHASE (degrees)

ΔA1

ΔA2

θ1 θ2

ΔA1

ΔA2

Δθ

Δθ

90

270

90

270

12359-

004

Figure 4. Measurement Dependence on Phase and Amplitude Variations 

The 

ADA2200-EVALZ

 includes a 10 Hz low-pass filter, which 

converts the demodulated signal to a dc voltage level. This 
conversion makes it possible to use a simple voltmeter to 
perform amplitude and phase measurements. 

Amplitude Measurements 

If the phase of the signal present at the inputs of 

ADA2200

 

remains constant, the output behaves as a linear function of the 
signal amplitude. In other words, if the amplitude of the signal 
doubles, the output voltage also doubles.  
The relationship between the signal amplitude and the output 
level depends on the relative phase between RCLK and the 
signal. This relationship is analogous to measuring the 
amplitude of a signal by looking at its crest (maximum 
amplitude point) or zero crossing. When the signal amplitude 
changes, the voltage at the crest sees the greatest change. In 
contrast, the zero crossing remains at zero. Because these two 
points are 90 degrees from each other, they are in quadrature.  
If the relative phase of the signal makes the amplitude 
measurement too small to measure, toggle the switch labeled 
EEPROM_BOOT and press the 

RESET

 button. This action 

allows th

ADA2200

 to boot with the EEPROM contents, which 

are the same as the default configuration, except that the 

ADA2200

 demodulates the quadrature component instead.  

Phase Measurements 

If the amplitude of the signal present at the inputs of 

ADA2200

 

remains constant, the output varies as a function of the relative 
phase between the signal and the reference clock (RCLK).  
As long as the phase shifts are small, this relationship is 
approximately linear; however, the gain (slope) of this 
relationship depends on the relative phase shift between the 
signal and RCLK. For example, if the phase shift occurs around 
the crest of the signal, the change at the output is barely 
noticeable. In addition, the user is not able to distinguish 
between a positive and a negative shift. In contrast, the 
maximum phase sensitivity is achieved when the phase shift 
happens around the zero crossing. Because these two points are 
90° from each other, they are in quadrature.  
If the relative phase of the signal makes the phase measurement 
too small to measure, toggle the EEPROM_BOOT switch and 
press the 

RESET

 button. This combination allows th

ADA2200

 

to boot with the EEPROM contents, which are the same as the 
default configuration, except that the 

ADA2200

 demodulates 

the quadrature component instead. 

Rev. 0 | Page 6 of 10 

Summary of Contents for ADA2200-EVALZ

Page 1: ...t equipment Inputs outputs supplies and other circuit test points can be easily accessed via test clips differential probes or standard SMA cables In addition the board can be easily powered from any...

Page 2: ...rd Description 4 Synchronous Demodulation Using the ADA2200 5 Input Signal Synchronization 5 Output Signal Synchronization 5 Programming the ADA2200 5 Selecting Between I and Q Demodulation Components...

Page 3: ...by connecting the reference clock output signal available through the P9 pins to a trigger input on the generator The signal generation must be configured to start on this trigger event burst generat...

Page 4: ...P12 connectors are arranged to accept a differential oscilloscope probe but regular clips can also be used Connecting a voltmeter between P7 and P8 allows the user to measure the dc signal after a 10...

Page 5: ...ster clock FS 1 Input sampling rate FSN 1 2 Input sampling Nyquist rate FD 1 8 Output sampling rate FDN 1 16 Output sampling Nyquist rate FSYNCO 1 8 Synchronization pulse frequency FRCK 1 64 Reference...

Page 6: ...inputs of ADA2200 remains constant the output behaves as a linear function of the signal amplitude In other words if the amplitude of the signal doubles the output voltage also doubles The relationshi...

Page 7: ...this switching is accomplished by toggling the EEPROM_BOOT switch and pressing the RESET button The dc voltage at the output represents the I and Q components Perform the following calculations to fi...

Page 8: ...2 1 OUT 5 4 3 2 1 IN R9 R8 1 3 2 EEPROM_BOOT C8 4 3 2 1 RESET C7 2 1 E1 16 5 8 12 2 14 15 9 13 11 10 6 7 3 1 4 U2 C14 C13 C15 C12 1 GND2 1 VOCM 1 TP7 1 TP8 C11 C10 C5 3 2 1 P5 3 2 1 P6 1 TP6 5 1 4 2 3...

Page 9: ...S 5 R1 R21 R22 R25 R26 Resistor precision thick film chip R1206 Panasonic ERJ 8ENF49R9V 3 R8 to R10 Resistor precision thick film chip R0603 Multicomp MC 0 063W 0603 1 100 5 R14 R16 R18 to R20 Resist...

Page 10: ...tion of the Evaluation Board to any other party for any reason Upon discontinuation of use of the Evaluation Board or termination of this Agreement Customer agrees to promptly return the Evaluation Bo...

Reviews: