background image

ADA2200-EVALZ User Guide 

UG-702 

 

QUICK START AND SETUP PROCEDURE 

The recommended configuration for initial evaluation is shown 
in Figure 2. The signal inputs can handle voltages from 0 V to 
3.3 V. Power is supplied through the mini-B USB plug by 
connecting it to any powered USB port. 
Set up the 

ADA2200-EVALZ

 by completing the following steps: 

1.

 

Power the board by plugging it into a PC or powered USB 
hub. The green LED (DS1) turns on when power is 
available. 

2.

 

Verify that the jumper configuration matches the settings 
shown in Table 1. With this configuration, the IN+ 
terminal can be driven with a single-ended source. 

3.

 

Configure a signal generator to source a 6.25 kHz signal. 
Offset the output voltage to make sure the signal remains 
between 0 V and 3.3 V. An offset at midsupply (1.65 V) 
allows maximum signal swing.  
Note that many signal generators have a 50 Ω source 
impedance and are configured for 50 Ω loads. Therefore, 
the voltage swing doubles when the instrument is not 
loaded with a 50 Ω impedance. This condition applies to 
both the amplitude and offset setting. Verify the actual 
signal output with a high input impedance scope before 
connecting the signal generator to the 

ADA2200-EVALZ

 

board. 

4.

 

Synchronize the signal generator and the board by 
connecting the reference clock output signal (available 
through the P9 pins) to a trigger input on the generator. 
The signal generation must be configured to start on this 
trigger event (burst generation) or to lock to the reference 
clock signal (RCK). The detailed configuration depends on 
the specific source used. 

5.

 

Connect the signal generator to the IN+ terminal through 
the P2 pins and enable the output. 

6.

 

To observe the demodulated signal, probe at P11 and P12. 
P11 and P12 are arranged for differential scope probes, but 
standard probes or clips work as well. Both the output 
synchronization pulse (SYNCO) and RCK can be used to 
trigger an oscilloscope. 

7.

 

Observe the filtered output by measuring the voltage 
between P7 and P8 with a digital multimeter (DMM).  

Table 1. Default Jumper Settings 

Designator  Position  Description 
P5 

1 and 2 

IN+ connected to INP  

P6 

2 and 3 

IN− connected to VOCM  

P13 

2 and 3 

On-board clock selected 

Pin 1 can be identified by the chamfered corner and number on 
the silkscreen. 

 

12359-

002

50

Ω

50

Ω

50

Ω

P13

P5

P2

P9

P6

P11

P7

P8

USB
(POWER ONLY)

1.58k

Ω

1.58k

Ω

20µF

20µF

ADA2200

50

Ω

RCK OUTPUT

50

Ω

CLK INPUT

0V TO 3.0V

SYNC  OUTPUT

OSCILLOSCOPE

00000

-00

0

CH1

5.00V

CH2 100m V

M2.00m s

A CH1

3.00V

VW

2

1

T

3.92000m s

IN+

OUT+

VOCM

IN–

OUT–

TRIG

CH1

CH2

CONFIG

EEPROM

I/Q

SEL

RESET

FUNCTION

GENERATOR

DMM

TRIG

OUT

P4

P10

P3

P12

 

Figure 2. Suggested Configuration for Quick Start, Showing Connections to Standard Test Equipment 

 
 

Rev. 0 | Page 3 of 10 

Summary of Contents for ADA2200-EVALZ

Page 1: ...t equipment Inputs outputs supplies and other circuit test points can be easily accessed via test clips differential probes or standard SMA cables In addition the board can be easily powered from any...

Page 2: ...rd Description 4 Synchronous Demodulation Using the ADA2200 5 Input Signal Synchronization 5 Output Signal Synchronization 5 Programming the ADA2200 5 Selecting Between I and Q Demodulation Components...

Page 3: ...by connecting the reference clock output signal available through the P9 pins to a trigger input on the generator The signal generation must be configured to start on this trigger event burst generat...

Page 4: ...P12 connectors are arranged to accept a differential oscilloscope probe but regular clips can also be used Connecting a voltmeter between P7 and P8 allows the user to measure the dc signal after a 10...

Page 5: ...ster clock FS 1 Input sampling rate FSN 1 2 Input sampling Nyquist rate FD 1 8 Output sampling rate FDN 1 16 Output sampling Nyquist rate FSYNCO 1 8 Synchronization pulse frequency FRCK 1 64 Reference...

Page 6: ...inputs of ADA2200 remains constant the output behaves as a linear function of the signal amplitude In other words if the amplitude of the signal doubles the output voltage also doubles The relationshi...

Page 7: ...this switching is accomplished by toggling the EEPROM_BOOT switch and pressing the RESET button The dc voltage at the output represents the I and Q components Perform the following calculations to fi...

Page 8: ...2 1 OUT 5 4 3 2 1 IN R9 R8 1 3 2 EEPROM_BOOT C8 4 3 2 1 RESET C7 2 1 E1 16 5 8 12 2 14 15 9 13 11 10 6 7 3 1 4 U2 C14 C13 C15 C12 1 GND2 1 VOCM 1 TP7 1 TP8 C11 C10 C5 3 2 1 P5 3 2 1 P6 1 TP6 5 1 4 2 3...

Page 9: ...S 5 R1 R21 R22 R25 R26 Resistor precision thick film chip R1206 Panasonic ERJ 8ENF49R9V 3 R8 to R10 Resistor precision thick film chip R0603 Multicomp MC 0 063W 0603 1 100 5 R14 R16 R18 to R20 Resist...

Page 10: ...tion of the Evaluation Board to any other party for any reason Upon discontinuation of use of the Evaluation Board or termination of this Agreement Customer agrees to promptly return the Evaluation Bo...

Reviews: