Abt Powerline SC Series Product Manual Download Page 8

06

POWERLINE

SC

SERIES

Charge

Charge

Correct charging is one of the most important
factors to consider when using valve regulated lead
acid batteries. Battery performance and service life
will be directly affected by the efficiency of the
charger selected. The basic charging methods are:

Constant Voltage Charging

Constant Current Charging

Two Stage Constant Voltage Charging

Charging at constant voltage is the most suitable
and commonly used method for charging valve
regulated lead acid batteries. Figures 8 - 13 show
the charging characteristics of Powerline SC when
charged by constant voltage chargers at 2.275
volts/cell, 2.40 volts/cell and 2.50 volts/cell when
the initial charging current is controlled at 0.1C
Amps and 0.25C Amps.

Figure 7 shows one example of a constant voltage
charging circuit. In this circuit, the initial charging
current is limited by the series resistance R1.

The recommended float charge voltage for
Powerline SC at 20 C is 2.275vpc ±0.005v. this
should be the measured average for the total
battery, however when measured within a battery
network or string the allowable tolerances can be
expected between 2.25vpc to 2.30vpc.

Constant Voltage Charging

Note

o

Figure 7. One example of constant voltage

chargeine circuit

AC

T

D

1

C

1

11

12

6

5

R

3

7

IC

10

2

13

C

2

R

4

R

5

R

1

TR

1

R

2

VR

Batt.

D

2

LOAD

4

3

CHARGING TIME (HOUSE)

Figure 8. Charging characteristics

(%) (xCA) (V)

0.1CA-6.825V(13.65V,4.55V)CONSTANT VOLTAGE

CHARGING AT20 C(68 F)

o

o

CHARGED

VOLUME

CHARGING

CURRENT

CHARGE

VOL

T

AGE

FOR

6V

BA

T

T

ER

Y

CHARGED

VOLUME

CHARGE VOLTAGE

CHARGING CURRENT

AFTER 100% DISCHARGE
AFTER 50% DISCHARGE

CHARGE

VOL

T

AGE

FOR

12V

B

A

T

TER

Y

CHARGE

VOL

T

AGE

FOR

4V

BA

T

TER

Y

120

100

80

60

40

20

0

0.02

0.08

0.1

0

5

10

15

20

25

30

35

40

11.0

12.0

13.0

14.0

4.50

4.00

3.50

0

(V)

0.04

0.06

7.50

7.00

6.50

6.00

5.50

140

120

100

80

60

40

20

0

5.00

4.50

4.00

3.50

0

2

4

6

8

10

12

14

16

18

20

CHARGE VOLTAGE

CHARGED

VOLUME

AFTER 50% DISCHARGE

AFTER 100% DISCHARGE

CHARGING TIME (HOURS)

7.50

7.00

6.50

6.00

5.50

CHARGING

CURRENT

11.0

12.0

13.0

14.0

15.0

(V)

0.1CA - 7.20V(14.4V,4.8V) CONSTANT VOLTAGE

CHARGINGAT 20 C (68 F)

o

o

Figure9. Charging characteristics

CHARGED

VOLUME

CHARGING

CURRENT

CHARGE

VOL

T

AGE

FOR

6V

BA

T

T

ER

Y

CHARGE

VOL

T

AGE

FOR

12V

B

A

T

TER

Y

CHARGE

VOL

T

AGE

FOR

4V

BA

T

T

ER

Y

(%) (xCA)

(V)

0.1

0.06

0.04

0

0.08

0.02

140

120

100

80

60

40

20

0

5.00

4.50

4.00

3.50

0

2

4

6

8

10

12

14

16

18

20

CHARGE VOLTAGE

CHARGED

VOLUME

AFTER 50% DISCHARGE

AFTER 100% DISCHARGE

CHARGING TIME (HOURS)

7.50

7.00

6.50

6.00

5.50

CHARGING CURRENT

11.0

12.0

13.0

14.0

15.0

(V)

0.1CA - 7.50V(15.0V,5.0V) CONSTANT VOLTAGE CHARGING

Figure10. Charging characteristics

CHARGED

VOLUME

CHARGING

CURRENT

CHARGE

VOL

T

AGE

FOR

6V

BA

T

TER

Y

CHARGE

VOL

T

AGE

FOR

12V

B

A

T

TER

Y

CHARGE

VOL

T

AGE

FOR

4V

BA

T

T

ER

Y

AT 20 C (68 F)

o

o

(%) (xCA)

(V)

0.1

0.06

0.04

0

0.08

0.02

Figure 11. Charging characteristics

(%)
140

120

100

80

60

40

20

0

0.05

0.10

0.15

0.20

0.25

7.50

7.00

6.50

6.00

5.50

(xCA)

(V)

0.25CA-6.825V(13.65V,4.55V)CONSTANT

VOLTAGE CHARGING AT20 C(68 F)

o

o

CHARGED

VOLUME

CHARGING

CURRENT

CHARGE

VOL

T

AGE

FOR

6V

BA

T

T

ER

Y

CHARGED VOLUME

CHARGE VOLTAGE

CHARGING CURRENT

AFTER 100% DISCHARGE

AFTER 50% DISCHARGE

0

2

4

6

8

10

12

14

16

18

20

11.0

12.0

13.0

14.0

15.0

5.00

4.50

4.00

3.50

CHARGE

VOL

T

AGE

FOR

12V

B

A

T

TER

Y

CHARGE

VOL

T

AGE

FOR

4V

BA

T

T

ER

Y

CHARGING TIME (HOUSE)

0

(V)

INTERNAL
RESISTANCE
(m

)

Ω

TERMINAL
VOLTAGE
(V)

BATTERY:SC12-7
AMBIENT TEMPERATURE:20 C(68 F)
MEASURED WITH 1000H AC BRIDGE

o

o

Z

0

10

20

30

40

50

60

70

80

100

110

120

13.0

12.0

11.0

10.0

9.0

0

2

4

6

8

10

12

14

16

18

20

22

DISCHARGE TIME(HOUSE)

3Hr

5Hr

10Hr

20Hr

Summary of Contents for Powerline SC Series

Page 1: ...SC Powerline Series Product Guide SEALED LEAD ACID BATTERY VALVE REGULATED Standard Commercial ...

Page 2: ...oduction 01 Technical Features 01 Applications Construction 02 General Specifications 03 Discharge 05 Charge 07 11 12 02 Expected Service Life of Powerline SC Design Application Suggestions to Ensure Maximum Service ...

Page 3: ...eration of Powerline SC in any orientation excluding continuous inverted use without loss of capacity service life or leakage of electrolyte The Powerline SC also conforms to IEC 60896 21 22 2004 Powerline SC are equipped with a safe low pressure venting system which is designed to release excess gas and close automatically as the internal gas pressure rising to an unacceptable level This low pres...

Page 4: ...ommunications Equipment Computers Control Equipment Electronic Cash Registers Electronic Test Equipment Emergency Lighting Systems Fire Security Systems Geophysical Equipment Medical Equipment Microprocessor Based Office machines Solar Powered Systems Telecommunication Systems Television Video Recorders UPS EPS Vending Machines l l l l l l l l l l l l l l l l l Applications ...

Page 5: ...51 151 151 151 151 181 50 65 65 65 98 76 94 93 93 93 94 166 100 98 98 98 100 166 1 80 2 40 2 58 2 58 3 57 5 80 84 49 52 56 84 126 240 140 150 160 240 360 9 5 22 20 20 16 14 F1 or F2 F1 or F2 F1 or F2 F1 or F2 F1 or F2 M5 x Ø12 A D D D D B Certification l l l l l CE UL ISO9001 ISO14001 OHSAS18001 l GOST Terminals Terminal Layout F1 F2 M5x 12 φ A B D 4 80 6 35 3 25 6 35 7 95 4 25 0 80 M5 φ12 0 80 ...

Page 6: ...xample if a lead acid battery were discharged to zero volts and left standing in either on or off load conditions for a long period of time severe sulphation would occur raising the internal resistance of the battery abnormally high In such an extreme case the battery may not accept charge Powerline SC have been designed to withstand some levels of over discharge However whilst this is not the rec...

Page 7: ...arious temperatures Available capacity measured by open circuit voltage Figure 4 shows extrapolated service life condition for powerline sc at different ambient temperatures As can be seen from figure 4 higher ambient temperatures will reduce service life Impedance figure 4 Temperature Life characteristics of powerline SC The internal resistance impedance of a battery is lowest when the battery is...

Page 8: ... 120 100 80 60 40 20 0 0 02 0 08 0 1 0 5 10 15 20 25 30 35 40 11 0 12 0 13 0 14 0 4 50 4 00 3 50 0 V 0 04 0 06 7 50 7 00 6 50 6 00 5 50 140 120 100 80 60 40 20 0 5 00 4 50 4 00 3 50 0 2 4 6 8 10 12 14 16 18 20 CHARGE VOLTAGE CHARGED VOLUME AFTER 50 DISCHARGE AFTER 100 DISCHARGE CHARGING TIME HOURS 7 50 7 00 6 50 6 00 5 50 CHARGING CURRENT 11 0 12 0 13 0 14 0 15 0 V 0 1CA 7 20V 14 4V 4 8V CONSTANT ...

Page 9: ...ll is applied occurs after the battery has recovered about 80 of its rated capacity This is one of the most efficient charging methods available as the recharge time is minimized during the initial stage whilst the battery is protected from overcharge by the system switching to stage 2 float standby charge at the switching point Y POWERLINE SC SERIES 07 Charge Figure 15 Characteristics of two SC12...

Page 10: ... the potential for overcharging the battery exists appropriate regulated charging circuitry between the solar panels and the battery is recommended Remote sites and other outdoor applications is where most solar powered systems are to be normally found When designing a solar powered system for this class of application a great deal of consideration must be given to environmental conditions For exa...

Page 11: ... LOAD condition may result in undercharging The constant voltage range required by a battery is always defined as the voltage range applied to a battery which is fully charged Therefore a charger having the output characteristics illustrated in Figure 22 should be adjusted with the output voltage based on point A The most important factor in adjusting charger output voltage is the accuracy at poin...

Page 12: ... speaking the most important factor is depth of discharge Figure 26 illustrates the effects of depth of discharge on cyclic life The relationship between the number of cycles which can be expected and the depth of discharge is readily apparent If an extended cycle life is required then it is common practice to select a battery with a larger capacity than the one that is required to carry the load ...

Page 13: ...duce electrical discharges in the form of sparks 3 When the battery is operated in a confined space adequate ventilation should be provided 4 The battery case is manufactured from high impact ABS plastic resin It should not be placed in an atmosphere of or in contact with organic solvents or adhesive materials 5 Correct terminals should be used on battery connecting wires Soldering is not recommen...

Page 14: ...n fresh water and seek IMMEDIATE medical attention 14 DO NOT INCINERATE batteries as they are liable to rupture if placed into a fire Batteries that have reached the end of their service life can be returned to us for safe disposal 15 Touching electrically conductive parts might result in an electric shock Be sure to wear rubber gloves before inspection or maintenance work 16 The use of mixed batt...

Page 15: ...sun com Email sales abtbatt com Our sales growth is due to a complete Global Network with Master distributors and Country managers who apply ABT commercial strategy and through Global Key Account in ABT World Wide ABT VRLA Battery PowerLine Thunder Enduro Sunwind e Trek ABT Copyright 2010 Shandong Sacred Sun Power Sources Co Ltd All rights reserved Version 201105 ...

Reviews: