background image

12 

TTH200, TTR200, TTF200 

 TEMPERATURE TRANSMITTER  |  SM/TTX200/SIL-EN REV. E 

 

10

 

Example PFD

AVG

 Calculation 

 

This example calculation demonstrates the PFDAVG calculation performed for a temperature transmitter TT*200-*H according 
Table 2 of ‘Appendix Exida FMEDA Report’. 
 
Considering the following SIS application data: 

•  Architecture: 1oo1 (single channel, nonredundant, HFT 0)  
•  Proof Test Coverage: 95 % 
•  Mission Time: 10 years 
•  Mean Time to Restoration: 24 hours 

The resulting PFD

AVG

 for a variety of proof test intervals is shown below: 

 

 PFD

AVG

 

 

1 year Proof Test 

2 years Proof Test 

5 years Proof Test

PFD

AVG

 = 1.75E-04 

PFD

AVG

 = 2.85E-04 

PFD

AVG

 = 6.15E-04

 
This means that for a SIL2 application, the PFD

AVG

 for a 1-year Proof Test Interval is approximately equal to 1.8 % of the allowed range.  

 

 

11

 

Failure modes, failure rates and diagnostics 

Failure modes, the outputs and estimated failure rates of the compliant item (in terms of the behavior of its output) due to random 
hardware failures have been analyzed by ABB Automation Products GmbH and Exida GmbH in compliance to the IEC 61508 demands. 
See ‘Appendix Exida FMEDA Report’ on the related failure data. 
 

Failure Rates 

The failure rate data used by Exida in the attached FMEDA are the basic failure rates from the Siemens standard SN 29500. The rates 
were chosen in a way that is appropriate for safety integrity level verification calculations. The rates were chosen to match operating 
stress conditions typical of an industrial field environment. It is expected that the actual number of field failures due to random 
events will be less than the number predicted by these failure rates.  
 
The listed SN 29500 failure rates are valid for operating stress conditions typical of an industrial field environment similar to IEC 
60654-1 class C (sheltered location) with an average temperature over a long period of time of 40 °C (25 °C ambient temperature plus 
internal self-heating). For a higher average temperature of 60 °C, the failure rates should be multiplied with an experience-based 
factor of 2.5. A similar multiplier should be used if frequent temperature fluctuation (daily fluctuation of > 15 °C) must be assumed.  
 
It is assumed that the equipment has been properly selected for the application and is adequately commissioned such that early life 
failures (infant mortality) may be excluded from the analysis.  
 
Failures caused by external events, however, should be considered as random failures. Examples of such failures are loss of power or 
physical abuse.  
The assumption is also made that the equipment is maintained per the requirements of IEC 61508 or IEC 61511 and therefore a 
preventative maintenance program is in place to replace equipment before the end of its ‘useful life’.  
The user of these numbers is responsible for determining their applicability to any particular environment. Accurate plant specific 
data may be used for this purpose. If a user has data collected from the proof test reporting system that indicates higher failure 
rates, the higher numbers shall be used. Some industrial plant sites have high levels of stress. Under those conditions the failure rate 
data shall be adjusted to a higher value to account for the specific conditions of the plant.  

Summary of Contents for TTH200

Page 1: ...ction TTH200 TTR200 TTF200 electronics for sensor head field and rail mounting for standard and high measurement This document must be considered in conjunction with related operating instructions Add...

Page 2: ...afe Failure Fraction SFF 7 Average probability of dangerous failure on demand PFDAVG 7 6 Constraints 8 7 Periodic proof test and maintenance 9 Proof Test 9 8 Installation commissioning configuration 1...

Page 3: ...2 as single transmitter installation Up to SIL 3 as redundant transmitter installation Mode of safety operation Low Demand Mode Hardware Fault Tolerance HFT 0 as single transmitter installation 1oo1 A...

Page 4: ...of failure per unit of time usually declared as FIT DD detected dangerous failures DU detected dangerous failures SD detected safe failures SU intrinsic safe failures PFDavg Average probability of dan...

Page 5: ...s High vibration environment The operation is above 67 maximum rating according to specification NAMUR NE43 Standardization of the signal level for the breakdown information of digital 4 to 20 mA tran...

Page 6: ...range from 20 0 to 23 6 mA The factory setting is 22 mA The low alarm current can be configured in a range from 3 5 to 4 0 mA The factory setting is 3 6 mA In the following cases and by some electric...

Page 7: ...Germany with results reported within FMEDA Report 12 04 016 TTx200 R023 Version V3 Revision R0 The summarized results are attached within Appendix Exida FMEDA Report Note The systematic safety integr...

Page 8: ...even when the current output is active with the configured high alarm The head mounted electronics TTH200 with IP00 rating according IEC 60529 for the measurement loop must be protected against envir...

Page 9: ...for voltage problems such as a low loop power supply voltage or increased wiring resistance This also tests for other possible electrical part failures 5 Send a HART command e g via EDD DTM FDI simul...

Page 10: ...guration parameters that are changed may affect the safety function of the device Therefore the safety function shall be checked again after modifications in accordance to the recommended proof tests...

Page 11: ...mperature transmitter 1 15 2 01 00 For safety applications only these versions were considered Optional Display HMI Type AS Optional LCD Indicator display for TTH200 HMI Type BS Optional LCD Indicator...

Page 12: ...actual number of field failures due to random events will be less than the number predicted by these failure rates The listed SN 29500 failure rates are valid for operating stress conditions typical o...

Page 13: ...lt detection time is 2 minutes Only the current output 4 to 20 mA is used for safety applications Only one input and one output are part of the considered safety function The application program in th...

Page 14: ...f data or information ABB Automation Products GmbH and its affiliates are not liable for damages and or losses related to such security breaches any unauthorized access interference intrusion leakage...

Page 15: ...TTH200 TTR200 TTF200 TEMPERATURE TRANSMITTER SM TTX200 SIL EN REV E 15 14Appendix Exida FMEDA Report...

Page 16: ...16 TTH200 TTR200 TTF200 TEMPERATURE TRANSMITTER SM TTX200 SIL EN REV E 14 Appendix Exida FMEDA Report...

Page 17: ...TTH200 TTR200 TTF200 TEMPERATURE TRANSMITTER SM TTX200 SIL EN REV E 17...

Page 18: ...18 TTH200 TTR200 TTF200 TEMPERATURE TRANSMITTER SM TTX200 SIL EN REV E 14 Appendix Exida FMEDA Report...

Page 19: ...TTH200 TTR200 TTF200 TEMPERATURE TRANSMITTER SM TTX200 SIL EN REV E 19...

Page 20: ...X200 SIL EN Rev E 07 2018 We reserve the right to make technical changes or modify the contents of this document without prior notice With regard to purchase orders the agreed particulars shall prevai...

Reviews: