background image

I

peak(typ)

+

I

LIM

)

V

IN

L

 

100 ns

I

peak(typ)

+

400 mA

)

V

IN

L

 

100 ns for the TPS61040

I

peak(typ)

+

250 mA

)

V

IN

L

 

100 ns for the TPS61041

TPS61040
TPS61041

www.ti.com

SLVS413F – OCTOBER 2002 – REVISED DECEMBER 2010

Table 2. Terminal Functions

TERMINAL

I/O

DESCRIPTION

DDC,

NAME

DRV NO.

DBV NO.

This is the enable pin of the device. Pulling this pin to ground forces the device into shutdown

EN

4

3

I

mode reducing the supply current to less than 1

m

A. This pin should not be left floating and needs

to be terminated.

This is the feedback pin of the device. Connect this pin to the external voltage divider to program

FB

3

4

I

the desired output voltage.

GND

2

1

Ground

NC

5

No connection

Connect the inductor and the Schottky diode to this pin. This is the switch pin and is connected to

SW

1

6

I

the drain of the internal power MOSFET.

V

IN

5

2

I

Supply voltage pin

DETAILED DESCRIPTION

OPERATION

The TPS61040/41 operates with an input voltage range of 1.8 V to 6 V and can generate output voltages up to
28 V. The device operates in a pulse-frequency-modulation (PFM) scheme with constant peak current control.
This control scheme maintains high efficiency over the entire load current range, and with a switching frequency
up to 1 MHz, the device enables the use of very small external components.

The converter monitors the output voltage, and as soon as the feedback voltage falls below the reference voltage
of typically 1.233 V, the internal switch turns on and the current ramps up. The switch turns off as soon as the
inductor current reaches the internally set peak current of typically 400 mA (TPS61040) or 250 mA (TPS61041).
See the

Peak Current Control

section for more information. The second criteria that turns off the switch is the

maximum on-time of 6

m

s (typical). This is just to limit the maximum on-time of the converter to cover for extreme

conditions. As the switch is turned off the external Schottky diode is forward biased delivering the current to the
output. The switch remains off for a minimum of 400 ns (typical), or until the feedback voltage drops below the
reference voltage again. Using this PFM peak current control scheme the converter operates in discontinuous
conduction mode (DCM) where the switching frequency depends on the output current, which results in very high
efficiency over the entire load current range. This regulation scheme is inherently stable, allowing a wider
selection range for the inductor and output capacitor.

PEAK CURRENT CONTROL

The internal switch turns on until the inductor current reaches the typical dc current limit (I

LIM

) of 400 mA

(TPS61040) or 250 mA (TPS61041). Due to the internal propagation delay of typical 100 ns, the actual current
exceeds the dc current limit threshold by a small amount. The typical peak current limit can be calculated:

(1)

The higher the input voltage and the lower the inductor value, the greater the peak.

By selecting the TPS61040 or TPS61041, it is possible to tailor the design to the specific application current limit
requirements. A lower current limit supports applications requiring lower output power and allows the use of an
inductor with a lower current rating and a smaller form factor. A lower current limit usually has a lower output
voltage ripple as well.

Copyright © 2002–2010, Texas Instruments Incorporated

Submit Documentation Feedback

3

Product Folder Link(s):

TPS61040 TPS61041

Содержание TPS61040

Страница 1: ...ows the use of small Internal Soft Start external components using ceramic as well as Available in SOT23 5 TSOT23 5 tantalum output capacitors Together with the thin and 2 2 0 8 mm SON Packages SON package the TPS61040 41 gives a very small overall solution size The TPS61040 has an internal APPLICATIONS 400 mA switch current limit while the TPS61041 has LCD Bias Supply a 250 mA switch current limi...

Страница 2: ...small parametric changes could cause the device not to meet its published specifications Table 1 ORDERING INFORMATION 1 SWITCH CURRENT PACKAGE TA PART NUMBER 2 PACKAGE LIMIT mA MARKING TPS61040DBV 400 SOT23 5 PHOI TPS61040DDC 400 TSOT23 5 QXK 40 C to TPS61041DBV 250 SOT23 5 PHPI 85 C TPS61040DRV 400 SON 6 2 2 CCL TPS61041DRV 250 SON 6 2 2 CAW 1 For the most current package and ordering information...

Страница 3: ...400 mA TPS61040 or 250 mA TPS61041 See the Peak Current Control section for more information The second criteria that turns off the switch is the maximum on time of 6 ms typical This is just to limit the maximum on time of the converter to cover for extreme conditions As the switch is turned off the external Schottky diode is forward biased delivering the current to the output The switch remains o...

Страница 4: ...shutdown is implemented and turns off the internal MOSFETs when the typical junction temperature of 168 C is exceeded The thermal shutdown has a hysteresis of typically 25 C This data is based on statistical means and is not tested during the regular mass production of the IC ABSOLUTE MAXIMUM RATINGS over operating free air temperature unless otherwise noted 1 UNIT Supply voltages on pin VIN 2 0 3...

Страница 5: ...age 0 4 V II EN input leakage current EN GND or VIN 0 1 1 mA POWER SWITCH AND CURRENT LIMIT Vsw Maximum switch voltage 30 V toff Minimum off time 250 400 550 ns ton Maximum on time 4 6 7 5 ms RDS on MOSFET on resistance VIN 2 4 V ISW 200 mA TPS61040 600 1000 mΩ RDS on MOSFET on resistance VIN 2 4 V ISW 200 mA TPS61041 750 1250 mΩ MOSFET leakage current VSW 28 V 1 10 mA ILIM MOSFET current limit TP...

Страница 6: ... Efficiency vs Input voltage 4 IQ Quiescent current vs Input voltage and temperature 5 VFB Feedback voltage vs Temperature 6 ISW Switch current limit vs Temperature 7 vs Supply voltage TPS61041 8 ICL Switch current limit vs Supply voltage TPS61040 9 vs Temperature 10 RDS on RDS on vs Supply voltage 11 Line transient response 12 Load transient response 13 Start up behavior 14 EFFICIENCY EFFICIENCY ...

Страница 7: ...eedback Voltage V 0 5 10 15 20 25 30 35 40 1 8 2 4 3 3 6 4 2 4 8 5 4 6 VI Input Voltage V TA 85 C TA 27 C TA 40 C Quiescent Current µA TPS61040 TPS61041 www ti com SLVS413F OCTOBER 2002 REVISED DECEMBER 2010 EFFICIENCY EFFICIENCY vs vs LOAD CURRENT INPUT VOLTAGE Figure 3 Figure 4 TPS61040 QUIESCENT CURRENT FEEDBACK VOLTAGE vs vs INPUT VOLTAGE FREE AIR TEMPERATURE Figure 5 Figure 6 Copyright 2002 2...

Страница 8: ...in Source On State Resistance mΩ 380 385 390 395 400 405 410 415 420 1 8 2 4 3 3 6 4 2 4 8 5 4 6 VCC Supply Voltage V TA 27 C I CL Current Limit mA TPS61040 TPS61041 SLVS413F OCTOBER 2002 REVISED DECEMBER 2010 www ti com TPS61040 41 TPS61041 SWITCH CURRENT LIMIT CURRENT LIMIT vs vs FREE AIR TEMPERATURE SUPPLY VOLTAGE Figure 7 Figure 8 TPS61040 TPS61040 41 CURRENT LIMIT STATIC DRAIN SOURCE ON STATE...

Страница 9: ...50 mA div VO 18 V VO 1 mA to 10 mA 200 µS div VO 100 mA div VO 18 V TPS61040 TPS61041 www ti com SLVS413F OCTOBER 2002 REVISED DECEMBER 2010 TPS61040 41 STATIC DRAIN SOURCE ON STATE RESISTANCE vs SUPPLY VOLTAGE Figure 11 Figure 12 Line Transient Response Figure 13 Load Transient Response Figure 14 Start Up Behavior Copyright 2002 2010 Texas Instruments Incorporated Submit Documentation Feedback 9 ...

Страница 10: ...the Peak Current Control section L Selected inductor value VIN min The highest switching frequency occurs at the minimum input voltage 2 If the selected inductor value does not exceed the maximum switching frequency of the converter the next step is to calculate the switching frequency at the nominal load current using the following formula Where IP Peak current as described in the Peak Current Co...

Страница 11: ...ut voltage is calculated as 5 For battery powered applications a high impedance voltage divider should be used with a typical value for R2 of 200 kΩ and a maximum value for R1 of 2 2 MΩ Smaller values might be used to reduce the noise sensitivity of the feedback pin A feedforward capacitor across the upper feedback resistor R1 is required to provide sufficient overdrive for the error comparator Wi...

Страница 12: ...e two ways to improve the line regulation further 1 Use a smaller inductor value to increase the switching frequency which will lower the output voltage ripple as well as the voltage ripple on the feedback pin 2 Add a small capacitor from the feedback pin FB to ground to reduce the voltage ripple on the feedback pin down to 50 mV again As a starting point the same capacitor value as selected for t...

Страница 13: ...iconductor MBR0520 TPS61040 41 20 V ON Semiconductor MBRM120L High efficiency 30 V Toshiba CRS02 LAYOUT CONSIDERATIONS Typical for all switching power supplies the layout is an important step in the design especially at high peak currents and switching frequencies If the layout is not carefully done the regulator might show noise problems and duty cycle jitter The input capacitor should be placed ...

Страница 14: ...JMK212BY475MG C2 Tayo Yuden GMK316BJ105KL VIN SW FB EN GND L1 10 µH D1 R1 2 2 MW R2 160 kW CFF 22 pF C2 1 µF VOUT 18 V 10 mA VIN 1 8 V to 6 V C1 4 7 µF R3 200 kW BC857C C3 0 1 µF Optional L1 Sumida CR32 100 D1 Motorola MBR0530 C1 Tayo Yuden JMK212BY475MG C2 Tayo Yuden TMK316BJ105KL TPS61040 TPS61040 TPS61041 SLVS413F OCTOBER 2002 REVISED DECEMBER 2010 www ti com Figure 16 LCD Bias Supply Figure 17...

Страница 15: ...212BJ106MG C2 Tayo Yuden EMK316BJ475ML TPS61040 VIN SW FB EN GND 3 3 µH D1 C2 4 7 µF 5 V 45 mA 1 8 V to 4 V C1 4 7 µF TPS61040 L1 Murata LQH4C3R3M04 D1 Motorola MBR0530 C1 C2 Tayo Yuden JMK212BY475MG CFF 3 3 pF R1 620 kW R2 200 kW TPS61040 TPS61041 www ti com SLVS413F OCTOBER 2002 REVISED DECEMBER 2010 Figure 19 Positive and Negative Output LCD Bias Supply Figure 20 Standard 3 3 V to 12 V Supply F...

Страница 16: ...QH4C3R3M04 D1 Motorola MBR0530 C1 Tayo Yuden JMK212BY475MG C2 Standard Ceramic Capacitor TPS61040 TPS61041 SLVS413F OCTOBER 2002 REVISED DECEMBER 2010 www ti com Figure 22 White LED Supply With Adjustable Brightness Control Using a PWM Signal on the Enable Pin Efficiency Approx Equals 86 at VIN 3 V ILED 15 mA A A smaller output capacitor value for C2 causes a larger LED ripple Figure 23 White LED ...

Страница 17: ...b Br CU NIPDAU Level 1 260C UNLIM 40 to 85 CCL TPS61041DBVR ACTIVE SOT 23 DBV 5 3000 Green RoHS no Sb Br CU NIPDAU Level 1 260C UNLIM 40 to 85 PHPI TPS61041DBVRG4 ACTIVE SOT 23 DBV 5 3000 Green RoHS no Sb Br CU NIPDAU Level 1 260C UNLIM 40 to 85 PHPI TPS61041DRVR ACTIVE SON DRV 6 3000 Green RoHS no Sb Br CU NIPDAU Level 1 260C UNLIM 40 to 85 CAW TPS61041DRVRG4 ACTIVE SON DRV 6 3000 Green RoHS no S...

Страница 18: ...ice 5 Multiple Device Markings will be inside parentheses Only one Device Marking contained in parentheses and separated by a will appear on a device If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device 6 Lead Ball Finish Orderable Devices may have multiple material finish options Finish options are separated ...

Страница 19: ...S61040DDCT SOT DDC 5 250 179 0 8 4 3 2 3 2 1 4 4 0 8 0 Q3 TPS61040DRVR SON DRV 6 3000 179 0 8 4 2 2 2 2 1 2 4 0 8 0 Q2 TPS61040DRVT SON DRV 6 250 179 0 8 4 2 2 2 2 1 2 4 0 8 0 Q2 TPS61041DBVR SOT 23 DBV 5 3000 179 0 8 4 3 2 3 2 1 4 4 0 8 0 Q3 TPS61041DBVR SOT 23 DBV 5 3000 178 0 9 0 3 23 3 17 1 37 4 0 8 0 Q3 TPS61041DRVR SON DRV 6 3000 179 0 8 4 2 2 2 2 1 2 4 0 8 0 Q2 TPS61041DRVR SON DRV 6 3000 1...

Страница 20: ...5 0 TPS61040DDCT SOT DDC 5 250 195 0 200 0 45 0 TPS61040DRVR SON DRV 6 3000 203 0 203 0 35 0 TPS61040DRVT SON DRV 6 250 203 0 203 0 35 0 TPS61041DBVR SOT 23 DBV 5 3000 203 0 203 0 35 0 TPS61041DBVR SOT 23 DBV 5 3000 180 0 180 0 18 0 TPS61041DRVR SON DRV 6 3000 203 0 203 0 35 0 TPS61041DRVR SON DRV 6 3000 205 0 200 0 33 0 TPS61041DRVT SON DRV 6 250 205 0 200 0 33 0 PACKAGE MATERIALS INFORMATION www...

Страница 21: ......

Страница 22: ......

Страница 23: ......

Страница 24: ......

Страница 25: ......

Страница 26: ......

Страница 27: ...esponsible for compliance with all legal regulatory and safety related requirements concerning its products and any use of TI components in its applications notwithstanding any applications related information or support that may be provided by TI Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failur...

Отзывы: