Texas Instruments CLC520 Скачать руководство пользователя страница 11

Application Information

(Continued)

the input signal, signal-to-noise ratio is maximized. The
maximum allowed input amplitude and from system specifi-
cations, using maximum required gain R

f

and R

g

can be

calculated.

The output stage op amp is a current-feedback type amplifier
optimized for R

f

= 1k

. R

g

can then be computed as:

To determine whether the maximum input amplitude will
overdrive the CLC520, compute:

V

dmax

= (R

g

+3.0

) · 0.00135

the maximum differential input voltage for linear operation. If
the maximum input amplitude exceeds the above V

dmax

limit,

then CLC520 should either be moved to a location in the
signal chain where input amplitudes are reduced, or the
CLC520 gain A

VMAX

should be reduced or the values for R

g

and R

f

should be increased. The overall system performance

impact is different based on the choice made.

If the input amplitude is reduced, recompute the impact on
signal-to-noise ratio. If A

VMAX

is reduced,

Post CLC520 amplifier gain, should be increased, or another
gain stage added to make up for reduced system gain..

To increase R

g

and R

f

, where V

dmax

= (+V

IN

)−(−V

IN

) the

largest expected peak differential input voltage. Compute the
lowest acceptable value for R

g

:

R

g

>

740 ˚ V

dmax

−3

Operating with R

g

larger than this value insures linear op-

eration of the input buffers.

R

f

may be computed from selected R

g

and A

VMAX

:

R

f

should be

>

= 1k

for overall best performance, however

R

f

<

1k

can be implemented if necessary using a loop gain

reducing resistor to ground on the inverting summing node of
the output amplifier (see application note QA-13 for details).

Printed Circuit Layout

A good high frequency PCB layout including ground plane
construction and power supply bypassing close to the pack-
age are critical to achieving full performance. The amplifier is
sensitive

to

stray

capacitance

to

ground

at

the

Inverting-input (pin12); keep node trace area small. Shunt

capacitance across the feedback resistor should not be used
to compensate for this effect.

For best performance at low maximum gains (A

VMAX

<

10)

R

g

+ and R

g

connections should be treated in a similar fash-

ion. Capacitance to ground should be minimized by remov-
ing the ground plane from under the resistor of R

g

.

Parasitic or load capacitance directly on the output (pin 10)
degrades phase margin leading to frequency response
peaking. A small series resistor before this capacitance,
effectively reduces this effect (see Settling Time vs. Capaci-
tive Load).

Precision buffed resistors (PRP8351 series from Precision
Resistive Products) must be used for R

f

for rated perfor-

mance. Precision buffed resistors are suggested for R

g

for

low gain settings (A

VMAX

<

10). Carbon composition resis-

tors and RN55D metal-film resistors may be used with re-
duced performance.

Evaluation PC boards (part no. 730021) for the CLC520 are
available.

Predicting the output noise

Seven noise sources (e

n

, i

n

, i

i

, i

io

, i

no

, e

no

, E

core

) are used to

model the CLC520 noise performance (

Figure 4). e

n

, i

n

, and

i

i

model the equivalent input noise terms for the input buffer

while i

io

, i

no

, and e

no

model the noise terms for the output

buffer. To simplify the model e

n

includes the effect of resistor

R

g

(see

Figure 5 for e

n

vs. R

g

). To simplify the model further,

R

bias

is assumed noiseless and its noise contribution is

included in i

io

.

An additional term E

core

mimics the active device noise

contribution from the Gilbert multiplier core. Core noise is
theoretically zero when the multiplier is set to maximum gain
or zero gain (V

g

>

1.6V or V

g

<

0.63V respectively at room

temperature) and reaches a maximum of 37nV/

at

A

VMAX

/2.

Several points should be made concerning this model. First,
external component noise contributions need to be factored
in when computing total output referred noise. The only
exception is R

g

, where its noise contribution is already fac-

tored in. Second, the model ignores flicker noise contribu-
tions. Applications where noise below approximately 100kHz
must be considered should use this model with caution.
Third, this model very accurately predicts output noise volt-
age for the typical application circuit (see above) but accu-
racy will degrade the component values deviate further from
those in the typical application circuit. In general, however,

01275647

FIGURE 4. CLC520 Noise Model

01275648

FIGURE 5. Equivalent Input Noise Voltage (e

n

) vs. R

g

CLC520

www.national.com

10

Содержание CLC520

Страница 1: ...CLC520 CLC520 Amplifier with Voltage Controlled Gain AGC Amp Literature Number SNOS861C...

Страница 2: ...ess than 0dB The gain control bandwidth of 100MHz is superb for AGC ALC loop stabilization And since the gain is minimum with a zero volt input and maximum with a 2 volt input driving the control inpu...

Страница 3: ...n Package Temperature Range Industrial Part Number Package Marking NSC Drawing 14 pin plastic DIP 40 C to 85 C CLC520AJP CLC520AJP N14A 14 pin plastic SOIC 40 C to 85 C CLC520AJE CLC520AJE M14A CLC520...

Страница 4: ...z 3dB Bandwidth VOUT 0 5VPP SBWC Gain Control Channel VIN 0 2V Vg 1VDC 100 80 80 80 MHz Gain Flatness VOUT 0 5VPP GFPL Peaking 0 1MHz to 30MHz 0 0 4 0 3 0 4 dB GFPH Peaking 0 1MHz to 20MHz 0 0 7 0 5 0...

Страница 5: ...600 600 CINC Capacitance 1 2 2 2 pF VGHI Vg Input Voltage For Max Gain 1 6 2 2 2 k VGLO For Min Gain 0 4 0 0 0 V RO Output Impedance At DC 0 1 0 3 0 2 0 2 VO Output Voltage Range No Load 3 5 3 3 2 3...

Страница 6: ...Rf 1k Rg 182 Vg 2V Frequency Response AVMAX 2 Frequency Response AVMAX 10 01275630 01275616 Frequency Response AVMAX 100 Large Signal Frequency Response 01275619 01275621 Small Signal Gain vs Rf 2nd...

Страница 7: ...RL 100 Rf 1k Rg 182 Vg 2V Continued 3rd Harmonic Distortion 2nd and 3rd Harmonic Distortion vs Vg 01275602 01275603 Gain vs Vg Gain vs Vg 01275640 01275639 Large and Small Signal Pulse Response Settli...

Страница 8: ...Rf 1k Rg 182 Vg 2V Continued Settling Time Vg 1 2V Long Term Settling Time 01275614 01275615 Settling Time vs Capacitive Load AVMAX 10 Gain Control Settling Time 01275604 01275617 Gain Control Channe...

Страница 9: ...C 5V RL 100 Rf 1k Rg 182 Vg 2V Continued Differential Gain and Phase PSRR 01275643 01275606 Output Noise vs Vg Linearity Vg 0 6V to 1 6V 01275622 01275644 Linearity Vg 0 75V to 1 4V Linearity Vg 0 9V...

Страница 10: ...e net gain control port input impedance is 50 set by the parallel combination of R1 and the 750 input impedance of pin 2 of the CLC520 Rf is set to the standard value 1k and Rg sets the maximum voltag...

Страница 11: ...a similar fash ion Capacitance to ground should be minimized by remov ing the ground plane from under the resistor of Rg Parasitic or load capacitance directly on the output pin 10 degrades phase mar...

Страница 12: ...ffer non inverting input is grounded The core noise is already output referred and is 37nV at Vg 1 1 AVMAX 2 and approaches zero as A goes to 0 or AVMAX Summing the noise power for each term gives the...

Страница 13: ...Physical Dimensions inches millimeters unless otherwise noted 14 Pin MDIP NS Package Number N14A 14 Pin SOIC NS Package Number M14A CLC520 www national com 12...

Страница 14: ...e failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness National Semiconductor Corporation Americas Email sup...

Страница 15: ...or use in safety critical applications such as life support where a failure of the TI product would reasonably be expected to cause severe personal injury or death unless officers of the parties have...

Отзывы: