background image

ADDITIONAL TERMS AND CONDITIONS, WARNINGS, RESTRICTIONS, AND DISCLAIMERS FOR

EVALUATION MODULES

Texas Instruments Incorporated (TI) markets, sells, and loans all evaluation boards, kits, and/or modules (EVMs) pursuant to, and user
expressly acknowledges, represents, and agrees, and takes sole responsibility and risk with respect to, the following:

1.

User agrees and acknowledges that EVMs are intended to be handled and used for feasibility evaluation only in laboratory and/or
development environments. Notwithstanding the foregoing, in certain instances, TI makes certain EVMs available to users that do not
handle and use EVMs solely for feasibility evaluation only in laboratory and/or development environments, but may use EVMs in a
hobbyist environment. All EVMs made available to hobbyist users are FCC certified, as applicable. Hobbyist users acknowledge, agree,
and shall comply with all applicable terms, conditions, warnings, and restrictions in this document and are subject to the disclaimer and
indemnity provisions included in this document.

2.

Unless otherwise indicated, EVMs are not finished products and not intended for consumer use. EVMs are intended solely for use by
technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical
mechanical components, systems, and subsystems.

3.

User agrees that EVMs shall not be used as, or incorporated into, all or any part of a finished product.

4.

User agrees and acknowledges that certain EVMs may not be designed or manufactured by TI.

5.

User must read the user's guide and all other documentation accompanying EVMs, including without limitation any warning or
restriction notices, prior to handling and/or using EVMs. Such notices contain important safety information related to, for example,
temperatures and voltages. For additional information on TI's environmental and/or safety programs, please visit

www.ti.com/esh

or

contact TI.

6.

User assumes all responsibility, obligation, and any corresponding liability for proper and safe handling and use of EVMs.

7.

Should any EVM not meet the specifications indicated in the user’s guide or other documentation accompanying such EVM, the EVM
may be returned to TI within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE
EXCLUSIVE WARRANTY MADE BY TI TO USER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR
STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. TI SHALL
NOT BE LIABLE TO USER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RELATED TO THE
HANDLING OR USE OF ANY EVM.

8.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or
combination in which EVMs might be or are used. TI currently deals with a variety of customers, and therefore TI’s arrangement with
the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services with respect to the handling or use of EVMs.

9.

User assumes sole responsibility to determine whether EVMs may be subject to any applicable federal, state, or local laws and
regulatory requirements (including but not limited to U.S. Food and Drug Administration regulations, if applicable) related to its handling
and use of EVMs and, if applicable, compliance in all respects with such laws and regulations.

10. User has sole responsibility to ensure the safety of any activities to be conducted by it and its employees, affiliates, contractors or

designees, with respect to handling and using EVMs. Further, user is responsible to ensure that any interfaces (electronic and/or
mechanical) between EVMs and any human body are designed with suitable isolation and means to safely limit accessible leakage
currents to minimize the risk of electrical shock hazard.

11. User shall employ reasonable safeguards to ensure that user’s use of EVMs will not result in any property damage, injury or death,

even if EVMs should fail to perform as described or expected.

12. User shall be solely responsible for proper disposal and recycling of EVMs consistent with all applicable federal, state, and local

requirements.

Certain Instructions.

User shall operate EVMs within TI’s recommended specifications and environmental considerations per the user’s

guide, accompanying documentation, and any other applicable requirements. Exceeding the specified ratings (including but not limited to
input and output voltage, current, power, and environmental ranges) for EVMs may cause property damage, personal injury or death. If
there are questions concerning these ratings, user should contact a TI field representative prior to connecting interface electronics including
input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate
operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the applicable EVM user's guide prior
to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During
normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output are maintained
at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass
transistors, and current sense resistors which can be identified using EVMs’ schematics located in the applicable EVM user's guide. When
placing measurement probes near EVMs during normal operation, please be aware that EVMs may become very warm. As with all
electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in
development environments should use EVMs.

Agreement to Defend, Indemnify and Hold Harmless.

User agrees to defend, indemnify, and hold TI, its directors, officers, employees,

agents, representatives, affiliates, licensors and their representatives harmless from and against any and all claims, damages, losses,
expenses, costs and liabilities (collectively, "Claims") arising out of, or in connection with, any handling and/or use of EVMs. User’s
indemnity shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if EVMs fail to perform as
described or expected.

Safety-Critical or Life-Critical Applications.

If user intends to use EVMs in evaluations of safety critical applications (such as life support),

and a failure of a TI product considered for purchase by user for use in user’s product would reasonably be expected to cause severe
personal injury or death such as devices which are classified as FDA Class III or similar classification, then user must specifically notify TI
of such intent and enter into a separate Assurance and Indemnity Agreement.

Содержание bq25570

Страница 1: ...st and Measurment Summary 7 3 1 Test Setups and Results 8 4 Bill of Materials and Board Layout 17 4 1 Bill of Materials 17 4 2 EVM Board Layout 18 5 PCB Layout Guideline 20 List of Figures 1 EVM Schematic 4 2 Test Setup for Measuring Boost Charger Efficiency 9 3 Charger Efficiency versus Input Voltage 9 4 Charger Efficiency versus Input Current 10 5 Test Setup for Measuring Buck Converter Efficien...

Страница 2: ...he VOUT pin The VOUT voltage is externally programmed to slightly less than the VSTOR voltage HiZ DC sources have a maximum output power point MPP that varies with ambient conditions For example a solar panel s MPP varies with the amount of light on the panel and with temperature The MPP is listed by the harvesting source manufacturer as a percentage of its open circuit OC voltage Therefore the bq...

Страница 3: ...ing the data sheet first will help in understanding the operations and features of this IC In this document battery or VBAT will be used but one could substitute any appropriate storage element System Design Tips Compared to designing systems powered from an AC DC converter or large battery for example low impedance sources designing systems powered by HiZ sources requires that the system load per...

Страница 4: ...7 C3 22uF J11 JP2 JP3 L2 10 uH L1 22uH J6 J7 J9 J10 J12 R5 4 99M J1 J3 C9 C8 C10 1 VSS 2 VIN_DC 3 VOC_SAMP 4 VREF_SAMP 5 EN 6 VOUT_EN 7 VBAT_OV 8 VRDIV 9 NC 10 OK_HYST 11 OK_PROG 12 VOUT_SET 13 VBAT_OK 14 VOUT 15 VSS 16 LBUCK 17 NC 18 VBAT 19 VSTOR 20 LBOOST 21 PWPD U1 BQ25570RGR BQ25570RGR TP3 TP6 TP8 TP9 JP6 VIN1 VIN1 VSTOR VOC_SAMP VBAT VSTOR VOC_SAMP VBAT VRDIV VRDIV Introduction www ti com 1 ...

Страница 5: ...converter output terminal block J12 GND Buck converter output J13 BAT_OK Battery Status Indicator Test Points TP1 Input source TP2 Boost charger switching node TP3 Buck converter switching node TP4 Boost charger output VSTOR TP5 Rechargeable storage element connection BAT_SEC TP6 Buck converter output VOUT TP7 VRDIV node CAUTION Providing an additional low impedance current path in parallel with t...

Страница 6: ...ding an additional leakage path for the VREF_SAMP capacitor for example GND through a 10 MΩ scope probe attached to VREF_SAMP will degrade input voltage regulation performance JP6 VBAT_OK to BAT_OK VOUT_EN configures the buck converter to be Uninstalled NOTE Do not install if JP3 shunt is installed VOUT_EN enabled only when VSTOR is greater than the VBAT_OK threshold per the resistors 2 786V on th...

Страница 7: ...r flux on a board has a resistivity in the 1 20 MΩ range Therefore flux remaining in parallel with changed 1 20 MΩ resistors can result in a lower effective resistances which will produce different operating thresholds than expected Similarly flux remaining in parallel with the VREF_SAMP capacitor provides an additional leakage path which results in the input voltage regulation set point drooping ...

Страница 8: ...attery and a lab supply connected to the BAT pin via a diode The lab supply biases up the battery voltage to the desired level It may be necessary to add more capacitance across R1 3 1 Test Setups and Results 3 1 1 Boost Charger Efficiency The test setup is shown in Figure 2 The specific equipment used for the test results in Figure 3 and Figure 4 is listed below 1 VIN_DC was connected to a Keithl...

Страница 9: ...SM1 SM1 Source Sink Meter Configured As Voltage Source SM2 SM2 www ti com Test and Measurment Summary Figure 2 Test Setup for Measuring Boost Charger Efficiency Figure 3 Charger Efficiency versus Input Voltage 9 SLUUAA7A July 2013 Revised August 2014 User s Guide for bq25570 Battery Charger Evaluation Module for Energy Harvesting Submit Documentation Feedback Copyright 2013 2014 Texas Instruments ...

Страница 10: ...input regulation loop may interfere with each other and cause the input voltage to oscillate Adding a large capacitor across VIN_DC and GND will eliminate this oscillation but the capacitor s leakage current will inflate the input current measurement and result in lower efficiency See SLUA691 for a detailed explanation on how to take these and other measurements with source meters 3 1 2 Buck Conve...

Страница 11: ...rom the VSTOR supply must be set to the highest level of filtering and or averaging which will result in longer than usual measurement times Alternatively these measurements can be taken with source meters instead of discrete power supply resistor load box and meters The source meter on VSTOR is configured as a voltage source The source meter on OUT can be configured as either a current source tha...

Страница 12: ...with a series resistor that switches in a 36 Ω resistor 3 VBAT was connected a 3 2 V charged 4 2 V coin cell 4 VSTOR VOUT and VIN_DC was monitored by oscilloscope voltage scope probes attached to TP4 TP6 and TP1 respectively and GND IOUT was measured with a current probe Figure 7 Test Setup for Performing Load Transient on Buck Output Figure 8 50 mA Load Transient on VOUT 12 User s Guide for bq255...

Страница 13: ...ith inductor L1 3 VSTOR s ripple voltage was measured using an oscilloscope voltage probe placed directly across the VSTOR capacitor C5 The scope probe s standard ground lead was replaced with very short lead 4 VIN and the LBOOST pin switching node of the boost charger were measured by oscilloscope voltage probes connected to TP1 and TP2 Figure 9 Charger Operational Waveforms During 50 mA Load Tra...

Страница 14: ...using an oscilloscope voltage probe placed directly across the VSTOR capacitor C5 VOUT s ripple voltage was measured using an oscilloscope voltage probe placed directly across the VOUT capacitor C3 Both scope probes standard ground leads were replaced with very short lead 4 The LBUCK pin s ripple voltage switching node of the buck converter was measured by a oscilloscope voltage probe connected to...

Страница 15: ...loads on VSTOR VBAT or VOUT 3 VIN_DC VSTOR and VOUT were measured with oscilloscope voltage probes connected at TP1 TP4 and TP6 Figure 11 Test Setup for Charging a Super Capacitor from Buck Output Figure 12 Charging a Super Cap from VOUT The benefit of charging of the super capacitor on VOUT instead of VBAT is faster charge time due to the charger spending less time in less efficient cold start mo...

Страница 16: ...istor to the ground of the EVM A 10 MΩ meter can be used to measure the voltage drop across the resistor and calculate the current No other connections should be made to the EVM and the measurement should be taken after steady state conditions are reached may take a few minutes The reading should be much less than 100 nA 16 User s Guide for bq25570 Battery Charger Evaluation Module for Energy SLUU...

Страница 17: ...mm 744031220 1 L2 10 uH Inductor SMT 1 4A 216mΩ 2 0mm x 2 5 mm 1239AS H 100N Toko Inductor SMT 250mA 500mΩ 2 5mm x 2 0mm x 1 00mm 74479888310 Wurth Elektronik Inductor SMT 500mA 390mΩ 2 8mm x 2 8mm x 1 35mm 744029100 Wurth Elektronik Inductor SMT 500mA 500mΩ 2 5mm x 2 0mm x 1 2mm 74479889310 Wurth Elektronik 1 R1 7 5M Resistor Chip 1 16W 1 603 CRCW06037M50FKEA Vishay Dale 1 R10 8 66M Resistor Chip...

Страница 18: ... L1 L2 R1 R10 R2 R3 R4 R5 R6 R7 R8 R9 TP1 TP4 TP5 TP6 TP2 TP3 TP7 TP8 TP9 U1 Bill of Materials and Board Layout www ti com 4 2 EVM Board Layout Figure 13 through Figure 15 are the board layouts for this EVM Figure 13 EVM PCB Top Assembly Figure 14 EVM PCB Top Layer 18 User s Guide for bq25570 Battery Charger Evaluation Module for Energy SLUUAA7A July 2013 Revised August 2014 Harvesting Submit Docu...

Страница 19: ...Layout Figure 15 EVM PCB Bottom Layer 19 SLUUAA7A July 2013 Revised August 2014 User s Guide for bq25570 Battery Charger Evaluation Module for Energy Harvesting Submit Documentation Feedback Copyright 2013 2014 Texas Instruments Incorporated ...

Страница 20: ...und return paths for example from resistors and CREF it is recommended to use short traces as well separated from the power ground traces and connected to VSS pin 15 This avoids ground shift problems which can occur due to superimposition of power ground current and control ground current The PowerPad should not be used as a power ground return path The remaining pins are either NC pins that shoul...

Страница 21: ...ndling and use of EVMs and if applicable compliance in all respects with such laws and regulations 10 User has sole responsibility to ensure the safety of any activities to be conducted by it and its employees affiliates contractors or designees with respect to handling and using EVMs Further user is responsible to ensure that any interfaces electronic and or mechanical between EVMs and any human ...

Страница 22: ...This equipment generates uses and can radiate radio frequency energy and if not installed and used in accordance with the instruction manual may cause harmful interference to radio communications Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at its own expense FCC Interference Statement ...

Страница 23: ...érieur au gain maximal indiqué sont strictement interdits pour l exploitation de l émetteur Mailing Address Texas Instruments Post Office Box 655303 Dallas Texas 75265 Copyright 2014 Texas Instruments Incorporated spacer Important Notice for Users of EVMs Considered Radio Frequency Products in Japan EVMs entering Japan are NOT certified by TI as conforming to Technical Regulations of Radio Law of ...

Страница 24: ...esponsible for compliance with all legal regulatory and safety related requirements concerning its products and any use of TI components in its applications notwithstanding any applications related information or support that may be provided by TI Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failur...

Отзывы: