background image

Technical Manual Evolution Hopper Standard Interface Model (EV01000)

Page 12 of 22

22-10-07

At power up in mode 2, IN3 is high. The first falling edge will be recognised as the first pulse
and the hopper motor will start running.
Pulsing on IN3 should not commence earlier than 130ms after the logic supply has been
established. This will allow for the power up timeout of 100ms and further processing time
prior to running the main program.

6.2.4 RESET FUNCTION

In this mode the Hopper is reset, i.e. processor reset and motor drive disabled. This function is
provided as added security enabling the host machine to immediately stop the Hopper irrespective of
its mode of operation.
Whilst in this mode connecting IN3 (pin 12) to ground turns the exit window sensor off in
order to test it is operative. Confirmation would be given as a signal output on pin 3 and 11 of
the 12 pin connector.

6.3 Optical Sensors

Optical sensors are fitted on the optic board in the exit window to detect coin pay-out.
A debounced coin output is available on pin 3 and pin 11. When no coins are present at the exit
window, the optical sensors are clear, the output transistors are open circuit, and the LED indicator is
off. Coins passing the optical sensors obstruct the light path causing the output transistors to pull down
to OV and the GREEN LED SENSOR indicator switches on.

6.4 Optical Security Feature

The output of the optical sensor is monitored by the microprocessor and if the sensor remains
obstructed for more than one second, the motor will be braked and will remain off until either the
sensor is cleared or power down takes place. This action will result if a coin jams in the exit
window or if the optical sensor fails which could be checked by toggling IN3 in Reset Mode.
If the security feature is operational, the security output on output pin 5 and the LED SECURITY
indicator will be switched off.
The optical security feature operates identically in all 3 Modes.

6.5 Motor Operation

The DC motor is controlled by the processor via a transistor bridge. The motor will run provided
that one of the sets of conditions shown below is met. If any single condition fails then the motor
is braked and remains so until all conditions bee true, or a power down occurs.

Mode 0 Motor Start Conditions:
- Security feature true
- 24V line true.

Mode 1 Motor Start Conditions:
- Security feature true
- 24V line true
- IN3 input low.

Mode 2 Motor Start Conditions:
- Security line true
- 24V line true
- internal coin count nonzero.

When braking is initiated for whatever reason, 50ms braking is carried out even if the fault
condition recovers before that time. This guarantees that the motor is stationary when the
bridge drivers change state, so that no excess current flows in the motor windings.

6.6 Motor Current Limit

The motor current is monitored by the processor. When the motor initially starts, the current is build up
gradually using PWM-current control. This reduces the high initial surge currents that occur in non-
current controlled motor driver circuits.

Содержание Evolution EV01000

Страница 1: ...Technical Manual Evolution Hopper Standard Interface Model EV01000 Page 1 of 22 22 10 07 Evolution Hopper EV01000 Product Manual Version 1 1 Oct 2007 ...

Страница 2: ...istory Revision Date Comment By 0 1 5 Sept 2005 Initial Release R T 0 2 12 Sept 2005 Added hopper application information chapter 7 Renumbered chapters R T 0 3 18 Sept 2005 Added section 6 8 4 R T 1 0 1 Nov 2005 Part numbers spelling E S 1 1 17 Okt 2007 New Exploded views Table belt part numbers E S ...

Страница 3: ...rect use of the product Design and specifications are subject to change without notice Wijzigingen in ontwerp en technische gegevens voorbehouden zonder kennisgeving La conception et les spécifications sont modifiables sans préavis El diseño y especificaciones están sujetos a cambios sin previo aviso WARNING Failure to observe the interface requirements specified in this technical manual may resul...

Страница 4: ...ODE 1 LOGIC CONTROL 11 6 2 3 MODE 2 COIN COUNTING 11 6 2 4 RESET FUNCTION 12 6 3 Optical Sensors 12 6 4 Optical Security Feature 12 6 5 Motor Operation 12 6 6 Motor Current Limit 12 6 7 Coins With Holes 13 6 8 High Security Exit Window 13 6 8 1 Description 13 6 8 2 Security 13 6 8 3 Opto test 13 6 8 4 Dirty opto 13 7 Hopper Application 14 7 1 Power Supply 14 7 2 Suggested hopper connection 14 7 3 ...

Страница 5: ...able 4 Coin Size vs Track type 16 Table 5 Electrical Interface 16 Figures Figure 1 Connector locations 7 Figure 2 Connector pin out 7 Figure 3 Hopper connection diagram 14 Figure 4 Connector pinout 16 Figure 5 Logic inputs 17 Figure 6 Logic outputs 17 Figure 7 Hopper dimensions 18 Figure 8 Base plate dimensions 19 Figure 9 21 01 30 00 mm series 20 Figure 10 19 00 26 40 mm series 21 Figure 11 16 25...

Страница 6: ...ange 16 25mm to 30mm diameter and 1 25mm 3 5mm thick giving the following approximate capacities Capacity Hopper volume Coin volume Diameter mm Thickness mm Coin type Approx capacity 25 75 2 20 2 Euro 1000 23 25 2 35 1 Euro 1200 24 25 2 40 0 50 Euro 1100 24 25 1 75 US quarter 1500 Table 1 Hopper capacity for some popular coins The standard version of the Evolution Hopper can handle coins between 2...

Страница 7: ...s the connector on the adjacent position The user can easily change this on an Evolution Hopper by loosening two screws on the bottom section taking out this part and then placing the cable with the connector at the opposite side Figure 1 Connector locations 3 2 Level Sensing All Evolution Hoppers are standard supplied with a low level and high level sensing function 3 3 Connectors Evolution Hoppe...

Страница 8: ...0 0 10 0 05 19 00 26 40 mm x 1 50 2 50 mm Yellow EV0050 3 Euro small 0 10 0 05 0 02 0 01 16 25 20 90 mm x 1 00 3 10 mm Green EV0050 4 Table 2 Coin size Vs Track type 3 5 Base plate The base plate offers the easy slide in and out function with a pre fitted connector that can simply be removed for fitting it in a cable harness The base plate is standard supplied with the Evolution Hopper See Figure ...

Страница 9: ...e 2 Connector pin out for connector details and for interfacing recommendations NOTE The wire to be used should have a maximum length of 3 metres and must be capable of handling the maximum Currents and Voltages specified in Table 5 Electrical Interface 3 Slide the hopper into the base plate and ensure that the two halves of the connector are securely mated 4 Turn on the power 4 2 Safety 1 Do not ...

Страница 10: ...able connects the main control board to the 12 way socket and carries all power supplies and control signals 5 2 Removal of the Electronics and Opto Sensor Board All the electronics and sensors are placed on one board located behind the exit door at the side of the hopper Slide the yellow button to the opposite position and remove the exit door where the electronics are mounted Taking out the boar...

Страница 11: ...ogic 6 2 1 MODE 0 DIRECT SWITCHING This is the default operating Mode and is selected when all of the input selectors are left open circuit When the 24V line is established the motor starts in the forward direction and when the 24V power line is removed the motor is braked 6 2 2 MODE 1 LOGIC CONTROL In this mode the logic and 24V power supplies can be permanently connected and motor function is de...

Страница 12: ...sor is monitored by the microprocessor and if the sensor remains obstructed for more than one second the motor will be braked and will remain off until either the sensor is cleared or power down takes place This action will result if a coin jams in the exit window or if the optical sensor fails which could be checked by toggling IN3 in Reset Mode If the security feature is operational the security...

Страница 13: ...iption The payout window uses optics consisting of an IR Led transmitting a beam that is reflected by a prism in an U shaped form and received back on an IR receiver The intensity of the IR pulse is minimized so that the somewhat transparant plastic coins as well as highly reflective coins are detected as optimal as possible The intensity of the IR pulse is adjusted dynamically to a higher level i...

Страница 14: ...VL VL VL VL VLogic VL VL VLogic 24Vdc Coin Exit Output Motor24Vdc Supply MotorGnd Supply 0V High or Top Level Sense Low Level Sense Security Output Logic Power Supply VLogic In1 0V Logic Gnd In3 Set Mode In1 Start Stop Set Mode In2 In2 10K 47K 47E 47K 47E 10K 39K NPN NPN NPN 24Vdc Power Supply 12 24Vdc Logic Supply Machine Optional Power Switches Evo Hopper Twist Wires Pin9 Motor Supply 24Vdc Pin1...

Страница 15: ...payouts the hopper should be braked at the first falling edge of the coin exit output pulse 7 3 2 Mode 1 In mode 1 the hopper is started by pulling the In3 line low to ground The hopper is braked as soon as the In3 line is pulled up again to Vlogic Note that in order to prevent any over payouts the hopper should be braked at the first falling edge of the coin exit output pulse 7 3 3 Mode 2 In mode...

Страница 16: ...y Capacity Hopper volume Coin volume 8 3 Connector Pin Description 1 Motor Supply 0 Vdc 2 Logic Supply 0 Vdc 3 Coin Exit Output 4 IN1 5 Security Output 6 High or Top level Sense Output 7 Low level Sense Output 8 IN2 9 Motor Supply 24Vdc 10 Logic Supply 12 24Vdc 11 Coin Exit Output 12 IN3 Figure 4 Connector pinout 8 4 Electrical Interface Electrical Interface Parallel Serial Voltage nominal 24 VDC ...

Страница 17: ...ic Compatibility Requirements for household appliances electric tools and similar apparatus Part 1 Emission EN 55014 2 1997 A1 2001 Electromagnetic Compatibility Requirements for household appliances electric tools and similar apparatus Part 2 Immunity Product family standard EN 61000 3 2 2000 Electromagnetic compatibility Part 3 2 Limits Limits for Harmonic current emissions equipment input curre...

Страница 18: ...Technical Manual Evolution Hopper Standard Interface Model EV01000 Page 18 of 22 22 10 07 9 Dimensions Figure 7 Hopper dimensions ...

Страница 19: ...Technical Manual Evolution Hopper Standard Interface Model EV01000 Page 19 of 22 22 10 07 Figure 8 Base plate dimensions ...

Страница 20: ...Technical Manual Evolution Hopper Standard Interface Model EV01000 Page 20 of 22 22 10 07 10 Exploded Views Figure 9 21 01 30 00 mm series ...

Страница 21: ...Technical Manual Evolution Hopper Standard Interface Model EV01000 Page 21 of 22 22 10 07 Figure 10 19 00 26 40 mm series ...

Страница 22: ...Technical Manual Evolution Hopper Standard Interface Model EV01000 Page 22 of 22 22 10 07 Figure 11 16 25 20 90 mm series ...

Страница 23: ......

Отзывы: