background image

RadioProcessor-G

System Architecture 

Figure 1 presents the architecture of the RadioProcessor-G, which consists of four major components: the data 

acquisition core, the excitation core, the gradient control core, and the PulseBlaster timing engine, which provides high-
resolution timing control for the entire system.

The acquisition core captures an incoming RF signal using a high-speed, high resolution Analog to Digital converter 

(ADC).  This signal is then demodulated digitally using quadrature detection, and is then filtered to reduce the signal to 
baseband.  The detection and filtering system is highly configurable and can easily be customized by the user for a wide 
variety of applications.  The baseband signal can then be stored in an internal RAM.  This data is then available to be 
retrieved by the host computer at the user's convenience.

The excitation core can produce both RF Analog signals as well as digital outputs.  The RF output is generated using 

an internal DDS (Direct Digital Synthesis) core, and can generate frequencies from DC up to 150 MHz.  The generated 
signal is converted to the Analog output by an on-board digital-to-analog converter (DAC) This DDS core also drives the 
detection of the acquisition core, so signal coherence is maintained between acquisition and excitation cores.

The gradient core controls three analog outputs that can be used to generate pulses with customizable durations and 

varying amplitudes of both positive and negative voltages. A standard application of the RadioProcessor-G uses these 
outputs to control the gradient coils for an MRI system, but they can also be used for gradient enhanced spectroscopy or 
diffusion applications.

At the heart of the system is the PulseBlaster™ pulse/pattern generator timing core, which uses a robust 

instruction set designed to allow the creation of complex pulse sequences with ease.  This timing core controls

all aspects of the systems functionality, such as triggering data acquisition, controlling the frequency and 

gating RF output, etc.  This core also controls the high resolution programmable digital outputs for controlling 

external hardware. Four digital outputs are available by default.

2017-09-04

6

www.spincore.com

Figure 1:

  RadioProcessor Model G Architecture. 

The master clock oscillator signal is derived from an on-chip PLL 

circuit typically using a 50 MHz on-board reference clock. 

RadioProcessor-G

Master clock

ADC

DAC

PCI

Interface

Internal

RAM

Digital Quadrature

Detection

Digital Filtering 

(user-customizable)

Phase and Frequency

Registers, Gating

NCO

Excitation

 

core

Acquisition core

PulseBlasterTM

Timing Core

Incoming Signal

Host PC

Signal

Averaging

RF Excitation
signal

Digital Output
Signals

Gradient

 

core

Gradient DAC controller

DAC

Analog Gradient
Control Signals

Содержание RadioProcessor-G

Страница 1: ...RadioProcessor G Owner s Manual SpinCore Technologies Inc http www spincore com...

Страница 2: ...ogies Inc reserves the right to make changes to the product s or information herein without notice RadioProcessor G PulseBlaster SpinCore and the SpinCore Technologies Inc logos are trademarks of Spin...

Страница 3: ...1 Step 2 Define RF Output Parameters 11 Step 3 Data Acquisition Parameters 12 Step 4 Specify Parameters of the Pulse Sequence 13 Step 5 Trigger the Pulse Program 14 Step 6 Retrieve Acquired Data 14 Us...

Страница 4: ...RadioProcessor G Hardware Trigger Reset Header JP601 20 Digital Output Header JP600 21 Related Products and Accessories 22 Contact Information 22 Document Information 22 2017 09 04 4 www spincore com...

Страница 5: ...essor manual for more details The system integrates SpinCore s high performance PulseBlaster timing engine for agile control of internal system components as well as TTL pulse pattern generation for c...

Страница 6: ...xcitation cores The gradient core controls three analog outputs that can be used to generate pulses with customizable durations and varying amplitudes of both positive and negative voltages A standard...

Страница 7: ...is shown below in Figure 2 2017 09 04 7 www spincore com Figure 2 Typical application of the RadioProcessor Model G By adding an RF power amplifier a gradient amplifier and a small signal pre amplifie...

Страница 8: ...it our website for more details Using the setup as described above with an 11 8 MHz permanent magnet a sample image of a 5 mm test tube filled with household cooking oil and two glass capillary tubes...

Страница 9: ...pling Frequency 75 1 MHz RF Analog Output D A Sampling Rate 300 MHz D A Sampling Precision 14 bits Output Voltage Range peak peak 1 2 2 V Phase resolution 0 09 deg Frequency resolution 0 28 Hz Gradien...

Страница 10: ...ent in this manual Testing the RadioProcessor G The simplest way to test whether the RadioProcessor G has been installed properly and can be controlled as intended is to run a simple test program Exam...

Страница 11: ...timing of the experiment i e pulse times delays etc 5 Trigger the pulse program The experiment will then proceed autonomously 6 Retrieve the captured data from the board at any time without interrupti...

Страница 12: ...nd in the RadioProcessor manual Once the RadioProcessor G has been instructed to acquire data there are two parameters that will influence the length for which data will be recorded these are the Spec...

Страница 13: ...e outputting data Multiple DACs can be selected int freq selects the frequency register that will be used for the carrier signal int tx_phase selects the phase register that will be used for the carri...

Страница 14: ...the SpinCore website includes a document that gives an in depth description of all the functions available in the API If you are unsure of how a particular function in an example program works please...

Страница 15: ...acquired per acquisition period nScans Number of times the entire sequence is performed nPhases Number of different phase levels to run the scan for spectrometerFrequency_MHz Frequency of the RF exci...

Страница 16: ...h all three gradients are applied Phase Gradient Time A period of time is waited to account for rise time of the gradient amplifiers Gradient Echo Delay The readout gradient coils then produce a gradi...

Страница 17: ...d gradient echo FID_Readout FID_Readout bat has delays and acquisition parameters set by default to aid in inspecting a single gradient echo This is best used to make sure that your acquisition parame...

Страница 18: ...outputs which can be controlled through the pulse program The analog output connector BNC3 is not equipped with an interpolating filter This allows for maximum flexibility in output frequency but it...

Страница 19: ...adout Gradient Hardware Trigger Reset Header JP601 The shrouded IDC header JP601 is the Hardware Trigger Reset connector This is an input connector for hardware triggering HW_Trigger and resetting HW_...

Страница 20: ...rigger is more precise since there are no software latencies involved HW_Reset pin 1 When this input is set to logical 0 for example by shorting it with pin 2 the pulse program is reset 2017 09 04 20...

Страница 21: ...nnector for header JP600 can be obtained on Digi Key Part Number 1 1658526 1 ND 2017 09 04 21 www spincore com Figure 9 Unshrouded IDC Output Header J600 Table 5 Unshrouded IDC Output Header J600 sign...

Страница 22: ...nent Magnets shtml 4 Consider complete MRI system in a small single bay enclosure Please inquire with SpinCore Technologies through our contact form which is available at http spincore com contact sht...

Отзывы: