Y Submatrix
●
Inputs: YB0-YB7
●
Outputs: YM0-YM2
Z Submatrix
●
Inputs: ZB0-ZB7
●
Outputs: ZM0-ZM2
For the P signal, bus there is a 7 x 2 matrix that allows the user to define up to two mixes of the P
signal bus. The reason the matrix is 7 x 2 instead of 8 x 2 is that since we can transmit on the P bus,
we do not need to mix our own channels in this matrix. The inputs and outputs for the 7 x 2 P bus
matrix are as follows.
P Submatrix
●
Inputs: PB0-PB7 (with one invalid)
●
Outputs: PM0-PM1
The crosspoint gains on all outputs are user adjustable. The "M" in the output labels of the submatrices
indicates that the signals are being fed into the Main Matrix.
The main matrix consists of the following inputs: the telephone input T, the signal generator (SG), the
outputs of the EF Bus submatrices PM0-PM1, WM0-WM2, XM0-XM2, YM0-YM2, and ZM0-ZM2. This is a
total of 16 inputs.
The main matrix consists of the following outputs: the output to the telephone interface T, and the EF
bus outputs P. This is a total of 2 outputs.
The matrix commands can adjust two types of parameters: integer and boolean. We will introduce the
matrix commands by using the MGAIN command as an example. This is an integer matrix command
that is used to set the gain (in dB) at any of the crosspoints in the main matrix or EF Bus submatrices.
Matrix commands are similar to channel commands except that instead of specifying a single channel, it
is necessary to specify a crosspoint (or range of crosspoints). In order to specify a single crosspoint,
you use the input and output labels discussed in this section. The first label always specifies the input
to the matrix and the second label always specifies the output of the matrix. For example, to set the
gain of the crosspoint (T, P) to -3 dB, you would send '
T04MGAINT,P,-3
' which sets the gain at the
crosspoint to -3 dB. In this case, a status message will be generated similar to '
T04MGAINT,P,-3
'.
It is also possible to use the wildcard character ('
*
') to specify ranges of crosspoints with the matrix
commands. The only restriction is that you can only use a wildcard to specify the input or output, but
not both simultaneously. Thus you could specify all the inputs going to a specific output (one column)
or the value of an input to all of the outputs (one row), but not the entire matrix. One example of using
a wildcard for an integer matrix command would be '
T04MGAINSG,*,0
'. This will set all the
crosspoints in the signal generator row of the main matrix to 0 dB. Thus, the signal generator will be
added to all of the outputs of the main matrix with a gain of 0 dB. In this case a status message will be
generated that looks like '
T04MGAINSG,*,ää
'. The binary representation used here is the same