1 pin
12pin
2 pin
11pin
S8JX
CN
CB
CBG
+V
–V
AC (L)
AC (N)
S8JX
CN
CB
CBG
+V
–V
AC (L)
AC (N)
䠆
6
+V
+V +S
–V
–S
–V
䠆
8
+
䠆
7
S8JX
CN
+RC
TR
SW
–RC
S8JX
CN
ALMC
ALME
S8JX
CN
Vce max : DC30V
Ic max :50mA
Fig.12
Fig.13
Fig.14
Fig.15
Fig.16
ᢰᵟ䈒✝㓯˖
㖁൰˖KWWSZZZIDRPURQFRPFQ
Fig.19
Fig.12
Fig.13
Fig.14
Fig.15
Fig.16
Fig.19
Fig.17
Fig.18
Fig.19
ؑਧ
I/O
䘎᧕ಘ
/ Signal I/O connector
↓䶒മ
/ Front view
No.
1
2
3
4
5
6
7
8
9
10
11
12
+V
+S
–V
–S
CB
CBG
+RC
–RC
NC
NC
ALMC
ALME
䝽㖞
/
Configuration
Fig.11
䜘ս〠
(CN)
CHN
Nomenclature (CN)
EN
1: DC output monitor pin (+V)
2: Remote sensing pin (+S)
3: DC output monitor pin (–V)
4: Remote sensing pin (–S)
5: Current balance pin (CB)
6: Signal ground pin for Current balance (CBG)
6:
⭘Ҿ⭥⍱ᒣ㺑Ⲵؑਧ᧕ൠᕅ㝊
(CBG)
7: Remote control pin (+RC)
8: Remote control pin (–RC)
9: No connect
10: No connect
11: Alarm output pin (ALMC)
(collector)
12: Alarm output pin (ALME)
(emitter)
Signal I/O connector: Provided as a standard accessory.
Shorted: (1 – 2), (3 – 4), and (7 – 8)
Mounted to CN at shipment.
Note:
Do not connect a load to the DC output monitor pins
(+V or –V).
֯⭘䈤᰾Җ
(2/2)
INSTRUCTION MANUAL (2/2)
MODEL
S8JX-P
(300/600W)
CHN
EN
SWITCHING POWER SUPPLY
Precautions for Correct Use
EN
㔍㕈ཆസкⲴধ䗩ᶑԦ
/
Crimping condition at wire insulation barrel
䭉䈟ধ䗩⽪ֻ
/ Examples of improper crimping
ሬ㓯ሬփケࠪ䗷䮯
/
Wire conductor protruding length is too long
ሬ㓯ཆസޕሬ㓯㔍㕈
/
Wire barrel is biting into the wire insulation
ሬ㓯ሬփケࠪ䗷⸝
/
Wire conductor protruding length is too short
ሬ㓯㔍㕈ধ䗩нݵ࠶
/
Wire insulation is not crimped sufficiently
ሬ㓯ሬփᵚধ䗩
/
Wire conductors is not crimped
ⴞ⍻ཤ䜘Ⲵ䬱ᇊᛵߥ
/
Check the locking condition of the lance visually
ૄం༠
/
Click
ᨂਓ
/
Insertion
䈧࣑ᗵ䰵䈫
S8JX-P
֯⭘䈤᰾Җ
(1/2)
ԕ৺ᵜ䈤᰾ҖDŽ
Read the S8JX-P Instruction Manual (1/2) together with this manual
without fail.
㢟ྭ
/ Good
ধ䗩儈ᓖ䳄
Crimp height (Isolation)
ধ䗩儈ᓖሬփ
Crimp height (Conductor)
⁚ᡚ䶒
/
Cross section
ᒦ㹼
/ Parallel Operation
Fig.12
䚕᧗ᝏᓄ࣏㜭
/ Remote sensing function
Fig.13
䚕᧗࣏㜭
/ Remote Control Function
Fig.14
ᣕ䆖䗃࣏ࠪ㜭
/ Alarm output function
Fig.15
Duty
䠙䚷䚷䚷䚷䚷
100
䠷
%
䠹
䍺
㻌
35%
㻌䠄
180
䡚
240VAC
䠅
t2
t1
Output current
[A]
lp
䠖
Peak current
lave
䠖
Average current
䞉
t1
䍺
10s
䞉
lp
䍺
Rated peak current
䞉
lave
䍺
Rated current
t1
t1
㸩
t2
Fig.16
⅗嗉㠚ࣘॆ˄ѝഭ˅ᴹ䲀ޜਨ
ൠ൰˖ѝഭк⎧ᐲ⎖ьᯠ४䬦ѝ䐟
ਧѝ䬦བྷᇔ
⭥䈍˖˄˅
⅗嗉˄к⎧˅ᴹ䲀ޜਨ
ൠ൰˖ѝഭк⎧ᐲ⎖ьᯠ४䠁ẕࠪਓ࣐ᐕ४䠁ਹ䐟ਧ
⭥䈍˖˄˅
1:
DC
䗃ࠪⴁ㿶ಘᕅ㝊
(+V)
2:
䚕᧗ᝏᓄᕅ㝊
(+S)
3:
DC
䗃ࠪⴁ㿶ಘᕅ㝊
(–V)
4:
䚕᧗ᝏᓄᕅ㝊
(–S)
5:
⭥⍱ᒣ㺑ᕅ㝊
(CB)
7:
䚕᧗ᕅ㝊
(+RC)
8:
䚕᧗ᕅ㝊
(–RC)
9:
ᰐ䘎᧕
10:
ᰐ䘎᧕
11:
ᣕ䆖䗃ࠪᕅ㝊
(ALMC)
(
䳶⭥ಘ
)
12:
ᣕ䆖䗃ࠪᕅ㝊
(ALME)
(
ਁሴಘ
)
ؑਧ
I/O
䘎᧕ಘ˖Ѫḷ߶䱴ԦᨀDŽ
⸝䐟˖
(1 – 2)
ǃ
(3 – 4)
઼
(7 – 8)
ˈࠪলᰦᆹ㻵㠣
CN
DŽ
⌘˖
䈧н㾱ሶ䍏䖭䘎᧕㠣
DC
䗃ࠪⴁ㿶ಘᕅ㝊
(+V
ᡆ
–V)
DŽ
䕔㻌
Parallel operation
When the CB pin (pin 5 on CN) and the CBG pin (pin 6 on CN) are connected, the current balance function operates and
parallel operation is possible.
Up to 5 Units can be connected.
Notes:
1. Use 2-conductor shielded cable as connection wire (
䠆
6).
2. Adjust the output voltage of each power supply to the same value within 1% or 100 mV, whichever is smaller.During
parallel operation, it is possible that the load current will flow excessively to either power supply and damage internal
components.
3. Parallel operation is used to increase static capacity. Output voltage may drop with sudden load fluctuations.
4. There may be steps in the rising waveform of the output voltage during parallel operation.
5. Remove the standard supplied connector and prepare a connector separately.
6. When N units are connected, a rush current equal to xN the current of one unit will flow.
Check the characteristics of the external fuse or breaker and select appropriately so that the fuse does not blow or the
breaker does not trip due to the rush current.
䕔㻌
Remote Sensing Function
This function is used to compensate for voltage drops on the load lines.Connect the +S pin (pin 2 on CN) to the positive
load terminal and the –S pin (pin 4 on CN) to the negative load terminal to enable remote sensing.
When not using the remote sensing function, use the standard connector. The + S and +V pins (pin 1 on CN) and the – S
and – V pins (pin 3 on CN) will be connected.
Notes:
1. Use 2-conductor shielded cable as connection wire (
䠆
7).
2 .Use as thick a wire as possible since high voltage drops on the load lines (
䠆
8) may activate the overvoltage protection
function.
3. The total line voltage drop (+ side line and – side line) must be less than 0.3 V.
4. If the sensing line is too long, it is necessary to put an electrolytic capacitor across the load terminals. Please take note
that the electrolytic capacitor may generate heat due to the ripple current, depending on connected load. Therefore, the
electrolytic capacitor must have a ripple current allowance higher then the output ripple current.
5. The stability and accuracy of the output will deteriorate if the +S or – S pins are open.
Always connect the +S and –S pins.
6. Remove the standard supplied connector and prepare a connector separately.
7. Make sure the remote sensing pins (+S, –S) are not open.
䕔㻌
Remote Control Function
This function turns outputs ON and OFF using an external signal while input voltage is applied, using the +RC pin (pin 7 on
CN) and the –RC pin (pin 8 on CN). Connect a switch or transistor to the +RC and –RC pins to use the remote control
function.
When not using this function, the +RC and –RC pins are shorted by using the standard connector.
The Maximum input voltage: 12V max.
The Maximum allowable reverse voltage: –1V max. Sink Current: 3.5mA
Notes:
1. Use 2-conductor shielded cable or twisted-pair cable as connection wire.
2. The remote control circuit is isolated from the input and output circuits of the power supply.
3. Remove the standard supplied connector and prepare a connector separately.
4. If a reverse voltage is applied to the remote control pin, output voltage ON/OFF will not be possible. Exercise caution
when wiring.
䕔㻌
Alarm output function
The Power failure alarm indicator will light red to indicate an output voltage error if overload, overvoltage, or overheat
protection is activated, if a drop in the input voltage causes the output voltage to drop, if the built-in fan motor stops, and
during remote control standby. The alarm is also output externally by a transistor.
Transistor output: 30 VDC max., 50 mA max. Residual voltage when ON: 2 V max, leakage current when OFF: 0.1 mA
max.
Alarm detection voltage: Approx. 80% of output voltage setting The transistor output is turned OFF if an alarm is detected
(no power to pins 11 and 12 on CN), and the LED indicator is lit (
䐤
: red).
Notes:
1. This function monitors the voltage at the power supply output terminals. To check actual voltage, measure the voltage on
the load side.
2.Remove the standard supplied connector and prepare a connector separately.
䕔㻌
Peak Output Current
(S8JX-P30024
䕕䕕䕕㻌
/S8JX-P60024
䕕䕕䕕㻌
)
See product catalogue for details.
Notes:
1. Do not allow the peak load current to continue for more than 10 seconds, and do not allow the duty cycle to exceed the
conditions indicated in Fig. 16. This may damage the power supply.
2. Lessen the load of the peak load current by adjusting the ambient temperature and the mounting orientation.
3. Ensure that the average current of one cycle of the peak current does not exceed the rating. This may damage the
power supply.
䕔㻌
Signal I/O Connector Harness Manufacture Method
This product is using PHD connector made from JAPAN SOLDERLESS TERMINAL MFG CO LTD. Regarding to
manufacture of a connector, it becomes the regulation as following.
1. Appricable Wire and Crimping tool
Appreciable wire per barrel size is UL1007 (standard wire ) and its equivalent standard wire can be used. Regarding the
AWG#22, use UL1061 or its equivalent standard wire, because wire insulation outer diameter of UL1061 is small. Wire
size is AWG#26 to AWG#22 and insulation outer dia is ø1.0 to ø1.5 mm.
Crimping tool is as below.
2. Crimping
The reference value of wire strip is 2.3mm. Addording to wire to be used, adjust dials of applicator to a proper crimp
height.
Table of crimp height
Notes:
1. Crimp height at wire barrel should be set to pre-determined dimensions.
2. Adjust crimp height at wire insulation barrel to the extent that wire insulation is slightly pressed, and set it so that
crimping is not excessivery.
3. Crimping condition at wire insulation barrel is as below .
Check the tensile strength at crimped part when operation finishes.
Table of tensile strength at crimped part
Check of crimping appearance visually for correct crimping as referring to
3. Inserting contact into housing
(1) Hold contact with its lance part upland align contact lance guide at housing with contact lance, and then insert contact
parallel to insertion axis.
(2) Insert contact into housing without stopping to innermost. When contact is fully inserted into housing,housing lance
clicks and there is feeling of response.
(3) Check after inserting crimped contact into housing.
Check secure locking per each insertion by pulling wire softly with a force of approx. 1N
+RC Level for –RC
Short or L (0 to 0.8V)
Open or H (2.4 to 12V)
Output
ON
OFF
Built-in Fan Motor
Rotate
Stop
Crimping tool
AP-K2 or AP-KS
Crimping applicator
MKS-L-10 or MKS-LS-10
Dies
SPHD-001-05
Wire size
UL1007
AWG26
UL1007
AWG24
UL1061
AWG22
Insulation O.D (mm)
1.3
1.5
1.4
Conductor part
0.60 to 0.70
0.65 to 0.75
0.70 to 0.80
Insulation part (Ref.value)
1.7
1.8
1.8
Crimp height (mm)
Fig.17
Wire size
UL1007
AWG26
UL1007
AWG24
UL1061
AWG22
Requirement N min.
20
30
40
Reference value N
39.2 to 45.1
68.6 to 74.5
92.1 to 96.0
Fig.17
Fig.18
Duty
䠙䚷䚷䚷䚷䚷
100
䠷
%
䠹
䍺
㻌
35%
㻌䠄
180
䡚
240VAC
䠅
t2
t1
䗃ࠪ⭥⍱
[A]
lp
䠖
ጠ٬⭥⍱
lave
䠖
ᒣ൷⭥⍱
䞉
t1
䍺
10s
䞉
lp
䍺
仍ᇊጠ٬⭥⍱
䞉
lave
䍺
仍ᇊ⭥⍱
t1
t1
㸩
t2
Fig.16
䕔㻌
ᒦ㹼
䘎᧕Ҷ
CB
ᕅ㝊
CN
кⲴᕅ㝊
5
઼
CBG
ᕅ㝊
CN
кⲴᕅ㝊
6
ᰦˈ⭥⍱ᒣ㺑࣏㜭Պᐕᒦਟԕ䘋㹼ᒦ㹼DŽ
ᴰཊਟԕ䘎᧕
5
њঅݳDŽ
⌘˖
1.
֯⭘
2
㣟ቿ㭭⭥㔶Ѫ䘎᧕㓯
䠆
6
DŽ
2.
ሶњ⭥ⓀⲴ䗃ࠪ⭥䈳ᮤѪ਼Ⲵ٬ˈᐞ൘
1%
ᡆ
100 mV
ѻˈԕ䖳ሿ㘵Ѫ߶DŽᒦ㹼ᵏ䰤ˈ䍏䖭⭥⍱ਟ㜭Պ䗷ᓖ
⍱ੁԫа⭥Ⓚᒦᦏൿ䜘ݳԦDŽ
3.
ᒦ㹼⭘Ҿ໎࣐䶉⭥⭥ᇩDŽ䍏䖭ケ❦⌒ࣘᰦˈ䗃ࠪ⭥ਟ㜭Պл䱽DŽ
4.
ᒦ㹼ᵏ䰤ˈ㾱ॷ儈䗃ࠪ⭥Ⲵ⌒ᖒਟ㜭䴰㾱ࠐ↕DŽ
5.
лḷ䝽Ⲵ䘎᧕ಘˈᒦਖཆ߶༷ањ䘎᧕ಘDŽ
6.
䘎᧕Ҷ
N
অݳᰦˈоањঅݳⲴ
xN
⭥⍱਼Ⲵケ⍱Պ⍱ޕDŽ
䈧Ựḕཆ䜘؍䲙эᡆᯝ䐟ಘⲴ⢩ᙗˈࠪਸ䘲Ⲵ䘹ᤙˈ֯ケ⍱нՊሬ㠤؍䲙э⟄ᯝᡆᯝ䐟ಘࣘDŽ
䕔㻌
䚕᧗ᝏᓄ࣏㜭
䈕࣏㜭⭘Ҿ㺕گ䍏䖭㓯䐟кⲴ⭥л䱽DŽሶ
+S
ᕅ㝊
CN
кⲴᕅ㝊
2
䘎᧕㠣↓ᶱ䍏䖭ㄟᆀкˈሶ
–S
ᕅ㝊
CN
кⲴᕅ㝊
4
䘎᧕㠣
䍏ᶱ䍏䖭ㄟᆀкˈԕࣘ䚕᧗ᝏᓄDŽ
н֯⭘䚕᧗ᝏᓄ࣏㜭ᰦˈ䈧֯⭘ḷ߶Ⲵ䘎᧕ಘDŽሶ䘎᧕
+ S
઼
+V
ᕅ㝊
CN
кⲴᕅ㝊
1
઼
– S
઼
– V
ᕅ㝊
CN
кⲴᕅ㝊
3
DŽ
⌘˖
1.
֯⭘
2
㣟ቿ㭭⭥㔶Ѫ䘎᧕㓯
䠆
7
DŽ
2.
⭡Ҿ䍏䖭㓯䐟
䠆
8
к䖳儈Ⲵ䱽ਟ㜭Պࣘ䗷⭥؍ᣔ࣏㜭ˈ䈧֯⭘ቭ䟿㋇Ⲵ᧕㓯DŽ
3.
ᙫ㓯䐟䱽
(+
ח㓯䐟઼
–
ח㓯䐟
)
ᗵ享ሿҾ
0.3 V
DŽ
4.
ྲ᷌ᝏᓄ㓯䐟䗷䮯ˈࡉ䴰㾱൘䍏䖭ㄟᆀѻ䰤ᆹ㖞⭥䀓⭥ᇩDŽ䈧⌘ˈ㿶䘎᧕Ⲵ䍏䖭㘼ᇊˈ⌒㓩⭥⍱ਟ㜭Պሬ㠤⭥䀓⭥ᇩӗ
⭏✝䟿DŽഐ↔ˈ⭥䀓⭥ᇩⲴ⌒㓩⭥⍱䲀仍ᗵ享儈Ҿ䗃ࠪ⌒㓩⭥⍱DŽ
5.
ྲ᷌
+S
ᡆ
–S
ᕅ㝊ᔰ䐟ˈࡉ䗃ࠪⲴっᇊᙗ઼㋮⺞ᙗሶл䱽DŽ
䈧࣑ᗵ䘎᧕
+S
ᡆ
–S
ᕅ㝊DŽ
6.
лḷ䝽Ⲵ䘎᧕ಘˈᒦਖཆ߶༷ањ䘎᧕ಘDŽ
7.
⺞؍䚕᧗ᝏᓄᕅ㝊
(+S, –S)
⋑ᴹᔰ䐟DŽ
䕔㻌
䚕᧗࣏㜭
൘䙊䗷
+RC
ᕅ㝊
(CN
кⲴᕅ㝊
7)
઼
–RC
ᕅ㝊
(CN
кⲴᕅ㝊
8)
ᯭ࣐䗃ޕ⭥ᰦˈ䈕࣏㜭Պ֯⭘ཆ䜘ؑਧᶕᔰ઼ޣ䰝䗃ࠪDŽ
ሶањᔰޣᡆᲦփ㇑䘎᧕㠣
+RC
઼
–RC
ᕅ㝊ˈԕ֯⭘䚕᧗࣏㜭DŽ
н֯⭘䈕࣏㜭ᰦˈՊ֯⭘ḷ߶䘎᧕ಘᶕ֯
+RC
઼
–RC
ᕅ㝊⸝䐟DŽ
ᴰབྷ䗃ޕ⭥
:
ᴰབྷ
12V
DŽ
ݱ䇨Ⲵᴰབྷ৽ੁ⭥
:
ᴰབྷ
–1V
DŽ৽ੁ⭥⍱
:
3.5mA
⌘˖
1.
֯⭘
2
㣟ቿ㭭⭥㔶ᡆৼ㔎㓯⭥㔶Ѫ䘎᧕㓯DŽ
2.
䚕᧗⭥䐟о⭥ⓀⲴ䗃ޕ઼䗃ࠪ⭥䐟࠶DŽ
3.
лḷ䝽Ⲵ䘎᧕ಘˈᒦਖཆ߶༷ањ䘎᧕ಘDŽ
4.
ྲ᷌ሩ䚕᧗ᕅ㝊ᯭ࣐Ҷ৽ੁ⭥ˈࡉн㜭ᔰޣ䰝䗃ࠪ⭥DŽ᧕㓯ᰦ䈧ሿᗳDŽ
䕔㻌
ᣕ䆖䗃࣏ࠪ㜭
ࣘҶ䗷䖭ǃ䗷⭥ᡆ䗷✝؍ᣔᰦˈ䗃ޕ⭥л䱽ሬ㠤䗃ࠪ⭥л䱽ᰦˈ㖞仾ᡷ⭥ᵪڌ→ᰦԕ৺䚕᧗ᖵᵪᵏ䰤ˈ⭥Ⓚ᭵䳌
ᣕ䆖ᤷ⽪⚟Պ㓒㢢Ӟ䎧ˈԕᱮ⽪䗃ࠪ⭥ࠪ䭉DŽ䘈Պ䙊䗷Ღփ㇑Ӿཆ䜘䗃ࠪᣕ䆖ؑਧDŽ
Ღփ㇑䗃ࠪ
:
ᴰབྷ
30 VDC
ˈᴰབྷ
50 mA
DŽᔰᰦⲴ࢙։⭥
:
ᴰབྷ
2 V
ˈޣ䰝ᰦⲴ⋴┿⭥⍱
:
ᴰབྷ
0.1 mA
DŽ
ᣕ䆖Ự⍻⭥
:
㓖Ѫ䗃ࠪ⭥䇮ᇊⲴ
80%
ྲ᷌Ự⍻ࡠᣕ䆖
(
⋑ᴹ⭥Ⓚ㠣
CN
кⲴᕅ㝊
11
઼
12)
઼
LED
ᤷ⽪⚟Ӟ䎧
(
ļ
:
㓒㢢
)
ᰦˈᲦփ㇑䗃ࠪՊޣ䰝DŽ
⌘˖
1.
䈕࣏㜭Պⴁ᧗⭥Ⓚ䗃ࠪㄟᆀкⲴ⭥DŽྲ㾱Ự⍻ᇎ䱵⭥ˈ䈧⍻䟿䍏䖭חⲴ⭥DŽ
2.
лḷ䝽Ⲵ䘎᧕ಘˈᒦਖཆ߶༷ањ䘎᧕ಘDŽ
䕔㻌
ጠ٬䗃ࠪ⭥⍱
(S8JX-P30024
䕕䕕䕕㻌
/S8JX-P60024
䕕䕕䕕㻌
)
ᴹޣ䈖ᛵˈ䈧৲㿱ӗ૱ⴞᖅDŽ
䈤᰾
1.
н㜭ݱ䇨ጠ٬䍏䖭⭥⍱ᤱ㔝
10
。䫏ԕкˈҏн㜭ݱ䇨䍏䖭ᗚ⧟䎵ࠪമ
16
ѝᱮ⽪ⲴᶑԦDŽࡉՊᦏൿ⭥ⓀDŽ
2.
䙊䗷䈳ᮤ⧟ຳᓖ઼ᆹ㻵ᯩੁᶕ߿ቁጠ٬䍏䖭⭥⍱Ⲵ䍏䖭DŽ
3.
⺞؍ጠ٬⭥⍱ањᗚ⧟Ⲵᒣ൷⭥⍱нՊ䎵䗷仍ᇊ٬DŽࡉՊᦏൿ⭥ⓀDŽ
䕔㻌
ؑਧ
I/O
䘎᧕ಘሬ㓯ࡦ䙐ᯩ⌅
䈕ӗ૱֯⭘⭡
JAPAN SOLDERLESS TERMINAL MFG CO LTD
ࡦ䙐Ⲵ
PHD
䘎᧕ಘDŽሩҾ䘎᧕ಘⲴࡦ䙐ˈ䴰㾱┑䏣ԕл㿴ࡉDŽ
1.
䘲⭘Ⲵሬ㓯઼ধ䗩ᐕާ
䘲⭘ቪረⲴሬ㓯Ѫ
UL1007(
ḷ߶ሬ㓯
)
৺਼㿴ṬⲴḷ߶ሬ㓯DŽሩҾ
AWG#22
ˈ䈧֯⭘
UL1061
ᡆ਼㿴ṬⲴḷ߶ሬ㓯ˈഐ
൘Ҿ
UL1061
Ⲵሬ㓯㔍㕈ཆⴤᖴ䖳ሿDŽሬ㓯ቪረѪ
AWG#26
ࡠ
AWG#22
ˈ㔍㕈ཆⴤᖴѪ
ø1.0
ࡠ
ø1.5 mm
DŽ
ধ䗩ᐕާྲлDŽ
2.
ধ䗩
㓯ᑖⲴ৲㘳٬Ѫ
2.3mm
DŽṩᦞᡰ⭘Ⲵሬ㓯ሶধ䗩ಘⲴᓖ䈳ᮤࡠਸ䘲Ⲵধ䗩儈ᓖDŽ
ধ䗩儈ᓖ㺘
⌘˖
1.
ሬ㓯ཆസⲴধ䗩儈ᓖᓄ䇮Ѫ亴䇒Ⲵ৲ᮠDŽ
2.
䈳ᮤሬ㓯㔍㕈ཆസⲴধ䗩儈ᓖˈ֯ᗇሬ㓯㔍㕈㻛〽ᗞ㍗ˈᒦфধ䗩нՊ䗷ᓖDŽ
3.
㔍㕈ཆസкⲴধ䗩ᶑԦྲлDŽ
㔃ᶏਾ䈧Ựḕধ䗩䜘սⲴᣇᕐᕪᓖDŽ
ধ䗩䜘սⲴᣇᕐᕪᓖ㺘
৲➗ⴞ⍻ধ䗩ཆ㿲ˈࡔᯝᱟ↓⺞DŽ
3.
ሶ᧕䀖ಘᨂޕᵪⴂ
(1)
ᨑտ᧕䀖ಘⲴཤ䜘ˈ֯ᵪⴂкⲴ᧕䀖ಘሬᶯо᧕䀖ಘཤ䜘ሩ喀ˈ❦ਾሶ᧕䀖ಘᒣ㹼ᨂޕᨂਓDŽ
(2)
ሶ᧕䀖ಘᆼޘᨂޕᵪⴂDŽ᧕䀖ಘᆼޘᨂޕᵪⴂᰦˈᵪⴂㄟՊਁࠪૄం༠ˈᒦ㜭ᝏ㿹ࡠ৽⭘࣋DŽ
(3)
ሶধ䗩䜘࠶ᨂޕᵪⴂਾ䘋㹼ỰḕDŽ
⭘㓖Ѫ
1N
Ⲵ࣋ᓖࣘሬ㓯ˈԕỰḕњᨂޕ༴Ⲵ䬱ᇊᱟ⢒പDŽ
–RC
Ⲵ
+RC
⭥ᒣ
⸝䐟ᡆ
L (0
ࡠ
0.8V)
ᔰ䐟ᡆ
H (2.4
ࡠ
12V)
䗃ࠪ
ᔰ
ޣ䰝
㖞仾ᡷ⭥ᵪ
䖜
ڌ→
ধ䗩ᐕާ
AP-K2
ᡆ
AP-KS
ধ䗩ಘ
MKS-L-10
ᡆ
MKS-LS-10
⁑ާ
SPHD-001-05
ሬ㓯ቪረ
UL1007
AWG26
UL1007
AWG24
UL1061
AWG22
㔍㕈
O.D (mm)
1.3
1.5
1.4
ሬփ䜘࠶
0.60
ࡠ
0.70
0.65
ࡠ
0.75
0.70
ࡠ
0.80
㔍㕈䜘࠶৲㘳٬
1.7
1.8
1.8
ধ䗩儈ᓖ
(mm)
Fig.17
ሬ㓯ቪረ
UL1007
AWG26
UL1007
AWG24
UL1061
AWG22
㾱≲
N
࠶䫏
20
30
40
৲㘳٬
N
39.2
ࡠ
45.1
68.6
ࡠ
74.5
92.1
ࡠ
96.0
Fig.17
Fig.18
⏝ὀព
CHN
11
9
7
5
3
1
12
10
8
6
4
2
CN 1/2
CHN
/
ࡦ䙐୶
CHN
ᢰᵟ䈒
2194719-3E (Side-B)