Chapter 12 Serial Peripheral Interface (S08SPIV4)
MC9S08LG32 MCU Series, Rev. 5
Freescale Semiconductor
291
As long as no more than one slave device drives the system slave’s serial data output line, it is possible for
several slaves to receive the same transmission from a master, although the master would not receive return
information from all of the receiving slaves.
If the CPHA bit in SPI Control Register 1 is clear, odd numbered edges on the SPSCK input cause the data
at the serial data input pin to be latched. Even numbered edges cause the value previously latched from the
serial data input pin to shift into the LSB or MSB of the SPI shift register, depending on the LSBFE bit.
If the CPHA bit is set, even numbered edges on the SPSCK input cause the data at the serial data input pin
to be latched. Odd numbered edges cause the value previously latched from the serial data input pin to shift
into the LSB or MSB of the SPI shift register, depending on the LSBFE bit.
When CPHA is set, the first edge is used to get the first data bit onto the serial data output pin. When CPHA
is clear and the SS input is low (slave selected), the first bit of the SPI data is driven out of the serial data
output pin. After the eighth shift, the transfer is considered complete and the received data is transferred
into the SPI data registers. To indicate transfer is complete, the SPRF flag in the SPI Status Register is set.
NOTE
A change of the bits CPOL, CPHA, SSOE, LSBFE, MODFEN, SPC0 and
BIDIROE with SPC0 set in slave mode will corrupt a transmission in
progress and has to be avoided.
14.5.3
SPI Clock Formats
To accommodate a wide variety of synchronous serial peripherals from different manufacturers, the SPI
system has a clock polarity (CPOL) bit and a clock phase (CPHA) control bit to select one of four clock
formats for data transfers. CPOL selectively inserts an inverter in series with the clock. CPHA chooses
between two different clock phase relationships between the clock and data.
shows the clock formats when CPHA = 1. At the top of the figure, the eight bit times are
shown for reference with bit 1 starting at the first SPSCK edge and bit 8 ending one-half SPSCK cycle
after the sixteenth SPSCK edge. The MSB first and LSB first lines show the order of SPI data bits
depending on the setting in LSBFE. Both variations of SPSCK polarity are shown, but only one of these
waveforms applies for a specific transfer, depending on the value in CPOL. The SAMPLE IN waveform
applies to the MOSI input of a slave or the MISO input of a master. The MOSI waveform applies to the
MOSI output pin from a master and the MISO
waveform applies to the MISO output from a slave. The SS
OUT waveform applies to the slave select output from a master (provided MODFEN and SSOE = 1). The
master SS output goes to active low one-half SPSCK cycle before the start of the transfer and goes back
high at the end of the eighth bit time of the transfer. The SS IN waveform applies to the slave select input
of a slave.
Содержание MC9S08LG16
Страница 2: ......
Страница 4: ......
Страница 8: ......
Страница 20: ......
Страница 26: ...Chapter 1 Device Overview MC9S08LG32 MCU Series Rev 5 26 Freescale Semiconductor...
Страница 40: ...Chapter 2 Pins and Connections MC9S08LG32 MCU Series Rev 5 40 Freescale Semiconductor...
Страница 96: ...Chapter 5 Resets Interrupts and General System Control MC9S08LG32 MCU Series Rev 5 96 Freescale Semiconductor...
Страница 296: ...Chapter 12 Serial Peripheral Interface S08SPIV4 MC9S08LG32 MCU Series Rev 5 296 Freescale Semiconductor...
Страница 372: ......