Mitsubishi FX2N-4AD-TC Скачать руководство пользователя страница 5

HEAD OFFICE

: MITSUBISHI DENKI BLDG MARUNOUTI TOKYO 100-8310

TELEX : J24532 CABLE MELCO TOKYO

HIMEJI WORKS : 840, CHIYODA CHO, HIMEJI, JAPAN

6. ALLOCATION OF BUFFER MEMORIES (BFM)

6.1 Buffer memories

The FX

2N

-4AD-TC communicates

with the PLC via buffer memories.

B F M s  # 2 1   t o   # 2 7   a n d   # 3 1   a r e
reserved.
All non reserved BFMs can be read
b y   t h e   P L C   u s i n g   t h e   F R O M
instruction.

BFMs (buffer memories) marked
with an “*” can be written to, the
special function block using the TO
instruction.

1) Buffer Memory BFM #0: Thermocouple Type K or J selection mode

BFM #0 is used to select Type K or J thermocouples for each channel. Each digit of a 4 digit
hexadecimal number corresponds to one channel, the least significant digit being channel 1.

A/D conversion time is 240ms per channel. When “3" (unused) is set for a channel, A/D conversion is
not executed for that channel, therefore, the total conversion time is decreased. In the above example,
the conversion time is as follows:

240ms (conversion time per channel) 

×

 2channels (number of channels used) = 480ms (total

conversion time)

2) Buffer Memory BFMs #1 to #4: Number of temperature readings to be averaged

When the number of temperature readings to be averaged is specified for BFMs #1 to #4, the
averaged data is stored in BFMs #5 to #8 (

°

C) and #13 to #16 (

°

F). Only the range 1 to 256 is valid for

the number of temperature readings to be averaged. If a value outside of this range is entered, a
default value of 8 is used.

3) Buffer Memory BFMs #9 to #12 and #17 to #20: Present temperature

These BFMs store the present value of the input data. This value is stored in units of 0.1

°

C or 0.1

°

F,

but the resolution is only 0.4

°

C or 0.72

°

F for Type K and 0.3

°

C or 0.54

°

F for Type J.

6.2 Status Information

1) Buffer Memory BFM #28: Digital range error latch

BFM #29 b10(digital range error) is used to judge whether the measured temperature is within the
unit’s range.
BFM #28 latches the error status of each channel and can be used to check for thermocouple
disconnection.

Low : Latches ON when the temperature measurement data drops below the lowest

temperature limit.

High 

: Turns ON when the temperature measurement data rises above the highest

temperature limit, or when a thermocouple is disconnected.

When an error occurs the temperature data before the error is latched. If the measured value returns
to within valid limits the temperature data returns to normal operation. (Note: The error remains
latched in (BFM #28))
An error can be cleared by writing K0 to BFM #28 using the TO instruction or turning off the power.

b15 or b8

b7

b6

b5

b4

b3

b2

b1

b0

Not used

High

Low

High

Low

High

Low

High

Low

CH4

CH3

CH2

CH1

BFM

CONTENTS

*#0

Thermocouple Type K or J selection mode.
At shipment: H0000

*# 1 - #4

CH1 to CH4 Averaged temperature reading to be 
averaged (1 to 256) Default = 8

 #5 - #8

CH1 to CH4 Averaged temperature in 0.1

°

C units

 #9 - #12

CH1 to CH4 Present temperature in 0.1

°

C units

 #13 - #16

CH1 to CH4 Averaged temperature in 0.1

°

F units

 #17 - #20

CH1 to CH4 Present temperature in 0.1

°

F units

 #21 - #27

Reserved

*#28

Digital range error latch

 #29

Error status

 #30

Identification code K2030

 #31

Reserved

H

 

3

 

3

 

1

 

0

CH1
CH2
CH3
CH4

0 = K type
1 = J type
3 = Not used

[ Example ]

2) Buffer Memory BFM #29: Error status

3) Identification Code Buffer Memory BFM #30

The identification code or ID number for this Special Block is read from buffer memory BFM #30 using
the FROM instruction. This number for the FX

2N

-4AD-TC unit is K2030. The PLC can use this facility in

its program to identify the special block before commencing data transfer to and from the special block.

7. SYSTEM BLOCK DIAGRAM

8. EXAMPLE PROGRAM

In the program shown below, the FX

2N

-4AD-TC occupies the position of special block number 2 (that is

the third closest block to the PLC). A Type K thermocouple is used on CH1 and a Type J on CH2. CH3 and
CH4 are not used. The averaging count is four. The averaged values in degrees C of input channels CH1
and CH2 are stored respectively in data registers D0 and D1.

Bit devices of BFM #29

ON

OFF

b0 : Error

When either b2 or b3 is ON
A/D conversion is stopped for 
the error channel

No error

b1 : Not used

b2 : Power source

24V DC power supply failure

power supply normal

b3 : Hardware error

A/D converter or other 
hardware failure

Hardware Normal

b4 to b9 : Not used

b10 : Digital range error

Digital output/analog input 
value is outside the specified 
range.

Digital output value is normal.

b11 : Averaging number error

Selected number of averaged 
results is outside the available 
range -see BFM #1 to #4

Averaging is normal.
(between 1 to 256)

b12 to b15 : Not used

Non-

contact

analog

switch

CPU

System

ROM

Buffer

Memory

RAM

A/D

converter

PLC

Command
information
write and
data status
read

24V DC

Power Source

5V Power
Supply

POWER
LED

Photocoupler

±15V

CH1

CH2

CH3

CH4

A/D
LED

Cyclic switching

FX

2N

-4AD-TC Analog Block

 DC/DC
   converter

Gain and offset

values are

stored in the

EEPROM

Control

signals

Converted

data

24V
LED

FROM

TO

5V

Analog Input

M8002

Initial
Pulse

         K2       K30      D2      K1

Y010

FNC78

FROM

       K2030   D2       M0

FNC10

CMP

M8000

RUN

monitor

         K2       K29   K4M10   K1

FNC78

FROM

M10

M8002

         K2       K0     H3310    K1

FNC79

TO

Initial
Pulse

Error found

Specify the type of thermocouples.
H3310 R Block No.2 BFM#0
CH4 and CH3: not used
CH2:                Type J(1)
CH1:                Type K(0)
Block No.2 BFM #30 R (D2)
Identification code

When (K2030) = (D2), M1 = ON.
i.e. When identification code is K2030, M1 = ON.

This initial step checks that the special function block placed at position 2 is actually
an FX

2N

-4AD-TC, i.e. its unit identification number is 2030 (BFM #30). This step is

optional, but it provides a software check that the system has been configured
correctly.

Block No.2 BFM #29 R (K4M10)
Transfer the error status to (M25 to M10).
When error is found, M10 = ON

Represents b0 BFM #29

This step provides optional monitoring of the FX

2N

-4AD-TC Error Buffer Memory (#29).

If there is an Error on the FX

2N

-4AD-TC, bit b0 of BFM #29 will be set on. This can be

read by this program step, and output as a bit device in the PLC (Y010 in this example).
Additional Error devices can be output in a similar manner, e.g. b10 BFM #29 Digital
range error. (see below)

Y010

M8000

         K2     K29    K4M10    K1

FNC78

FROM

M10

Y011

M20

Represents b0 BFM #29

Represents b10 BFM #29

9. DIAGNOSTICS

9.1 Preliminary checks

I.

Check whether the input/output wiring and/or extension cables are properly connected on the FX

2N

-

4AD-TC analog special function block.

II.

Check that the PLC system configuration limits have not been exceeded, i.e. the number of special
function blocks and the total system I/O are within the specified range.

III.  Ensure that the correct operating range has been selected for the application.

IV. Check that there is no power overload on either the 5V or 24V power sources, remember the loading

on the main unit or a powered extension unit varies according to the number of extension blocks or
special function blocks connected.

V.

Make sure that the main unit has been switched to RUN.

9.2 Error checking

If the FX

2N

-4AD-TC special function block does not seem to operate normally, check the following items.

Check the status of the POWER LED.
Lit

:The extension cable is properly connected.

Otherwise :Check the connection of the extension cable.

Check the external wiring.

Check the status of the “24V” LED (top right corner of the FX

2N

-4AD-TC).

Lit

:FX

2N

-4AD-TC is ON, 24V DC power source is ON.

Otherwise :Possible 24V DC power failure, if ON possible FX

2N

-4AD-TC failure.

Check the status of the “A/D” LED (top right corner of the FX

2N

-4AD-TC).

Lit

:A/D conversion is proceeding normally.

Otherwise :Check buffer memory #29 (error status). If any bits (b0, b2, b3) are ON, then this is why 

the A/D LED is OFF.

10.EMC CONSIDERATIONS

Electromagnetic compatibility or EMC must be considered before using the FX

2N

-4AD-TC.

Mitsubishi recommend that the thermocouple sensors used, should be fitted with a form of seild or
screening as protection against EMC noise.

If some form of cable protection is used, the “Shield” must be terminated at the 

 terminals

as shown in chapter 2.

Because of the delicate nature of all analog signals, failure to take good EMC precautions could lead to
EMC noise induced errors; up to ±10% of actual values. This is an absolute worst case figure, users who
do take good precautions can expect operation within normal tolerances.

EMC considerations should include selection of good quality cables, good routing of those cables away
from potential noise sources.

Additionally it is recommended that signal averaging is used as this will reduce the effects of random
noise “spikes”.

M1

         K2       K1        K4       K2

FNC79
TO

         K2       K5        D0       K2

FNC78

FROM

P

         K2           K29            K4M10       K1

FNC78

FROM

special
block No.2

FX

2N

-4AD-TC

BFM number

result
destination

No. of
words read

(K4) 

 (BFM #1), (K4) 

 (BFM #2)

Number of samples is changed to four on both CH1 and
CH2.

(BFM #5) 

 (D0), (BFM #6) 

 (D1)

Transfer the averaged temperature value in °C to the
data registers.

This step is the actual reading of the FX

2N

-4AD-TC input channels. It is essentially the

only program step which is needed. The "TO" instruction in this example, sets the input
channels, CH1 and CH2, to take the average reading of four samples.
The "FROM" instruction reads the average temperatures (BFM #5 and #6) for input
channels CH1 and CH2 of the FX

2N

-4AD-TC. If direct temperature readings are

required BFM #9 and #10 should be read instead, e.g.

SLD

Manual number : JY992D65501

Manual revision : B

Date

: SEPTEMBER 2002

Содержание FX2N-4AD-TC

Страница 1: ...X G Type J JX G JX H For every 10Ω of line resistance the compensating cable will indicate a temperature 0 12 C higher than actual Check the line resistance before using Long compensating cables are more prone to noise interference therefore a short less than 100m compensating cable is recommended Unused channels should have a wire link connected between the and terminals to prevent an errors bein...

Страница 2: ...X G Type J JX G JX H For every 10Ω of line resistance the compensating cable will indicate a temperature 0 12 C higher than actual Check the line resistance before using Long compensating cables are more prone to noise interference therefore a short less than 100m compensating cable is recommended Unused channels should have a wire link connected between the and terminals to prevent an errors bein...

Страница 3: ...X G Type J JX G JX H For every 10Ω of line resistance the compensating cable will indicate a temperature 0 12 C higher than actual Check the line resistance before using Long compensating cables are more prone to noise interference therefore a short less than 100m compensating cable is recommended Unused channels should have a wire link connected between the and terminals to prevent an errors bein...

Страница 4: ...og switch CPU System ROM Buffer Memory RAM A D converter PLC Command information write and data status read 24V DC Power Source 5V Power Supply POWER LED Photocoupler 15V CH1 CH2 CH3 CH4 A D LED Cyclic switching FX2N 4AD TC Analog Block DC DC converter Gain and offset values are stored in the EEPROM Control signals Converted data 24V LED FROM TO 5V Analog Input M8002 Initial Pulse K2 K30 D2 K1 Y01...

Страница 5: ...og switch CPU System ROM Buffer Memory RAM A D converter PLC Command information write and data status read 24V DC Power Source 5V Power Supply POWER LED Photocoupler 15V CH1 CH2 CH3 CH4 A D LED Cyclic switching FX2N 4AD TC Analog Block DC DC converter Gain and offset values are stored in the EEPROM Control signals Converted data 24V LED FROM TO 5V Analog Input M8002 Initial Pulse K2 K30 D2 K1 Y01...

Страница 6: ...og switch CPU System ROM Buffer Memory RAM A D converter PLC Command information write and data status read 24V DC Power Source 5V Power Supply POWER LED Photocoupler 15V CH1 CH2 CH3 CH4 A D LED Cyclic switching FX2N 4AD TC Analog Block DC DC converter Gain and offset values are stored in the EEPROM Control signals Converted data 24V LED FROM TO 5V Analog Input M8002 Initial Pulse K2 K30 D2 K1 Y01...

Страница 7: ...X G Type J JX G JX H For every 10Ω of line resistance the compensating cable will indicate a temperature 0 12 C higher than actual Check the line resistance before using Long compensating cables are more prone to noise interference therefore a short less than 100m compensating cable is recommended Unused channels should have a wire link connected between the and terminals to prevent an errors bein...

Страница 8: ...og switch CPU System ROM Buffer Memory RAM A D converter PLC Command information write and data status read 24V DC Power Source 5V Power Supply POWER LED Photocoupler 15V CH1 CH2 CH3 CH4 A D LED Cyclic switching FX2N 4AD TC Analog Block DC DC converter Gain and offset values are stored in the EEPROM Control signals Converted data 24V LED FROM TO 5V Analog Input M8002 Initial Pulse K2 K30 D2 K1 Y01...

Отзывы: