![Microchip Technology PIC12F1501 Скачать руководство пользователя страница 125](http://html1.mh-extra.com/html/microchip-technology/pic12f1501/pic12f1501_manual_1785833125.webp)
PIC16(L)F1508/9
DS40001609E-page 126
2011-2015 Microchip Technology Inc.
14.0
TEMPERATURE INDICATOR
MODULE
This family of devices is equipped with a temperature
circuit designed to measure the operating temperature
of the silicon die. The circuit’s range of operating
temperature falls between -40°C and +85°C. The
output is a voltage that is proportional to the device
temperature. The output of the temperature indicator is
internally connected to the device ADC.
The circuit may be used as a temperature threshold
detector or a more accurate temperature indicator,
depending on the level of calibration performed. A one-
point calibration allows the circuit to indicate a
temperature closely surrounding that point. A two-point
calibration allows the circuit to sense the entire range
of temperature more accurately. Reference Application
Note AN1333, “
Use and Calibration of the Internal
Temperature Indicator
” (DS01333) for more details
regarding the calibration process.
14.1
Circuit Operation
shows a simplified block diagram of the
temperature circuit. The proportional voltage output is
achieved by measuring the forward voltage drop across
multiple silicon junctions.
describes the output characteristics of
the temperature indicator.
EQUATION 14-1:
V
OUT
RANGES
The temperature sense circuit is integrated with the
Fixed Voltage Reference (FVR) module. See
13.0 “Fixed Voltage Reference (FVR)”
for more
information.
The circuit is enabled by setting the TSEN bit of the
FVRCON register. When disabled, the circuit draws no
current.
The circuit operates in either high or low range. The high
range, selected by setting the TSRNG bit of the
FVRCON register, provides a wider output voltage. This
provides more resolution over the temperature range,
but may be less consistent from part to part. This range
requires a higher bias voltage to operate and thus, a
higher V
DD
is needed.
The low range is selected by clearing the TSRNG bit of
the FVRCON register. The low range generates a lower
voltage drop and thus, a lower bias voltage is needed to
operate the circuit. The low range is provided for low
voltage operation.
FIGURE 14-1:
TEMPERATURE CIRCUIT
DIAGRAM
14.2
Minimum Operating V
DD
When the temperature circuit is operated in low range,
the device may be operated at any operating voltage
that is within specifications.
When the temperature circuit is operated in high range,
the device operating voltage, V
DD
, must be high
enough to ensure that the temperature circuit is
correctly biased.
shows the recommended minimum V
DD
vs.
range setting.
TABLE 14-1:
RECOMMENDED V
DD
VS.
RANGE
14.3
Temperature Output
The output of the circuit is measured using the internal
Analog-to-Digital Converter. A channel is reserved for
the temperature circuit output. Refer to
15.0 “Analog-to-Digital Converter (ADC) Module”
for
detailed information.
14.4
ADC Acquisition Time
To ensure accurate temperature measurements, the
user must wait at least 200
s after the ADC input
multiplexer is connected to the temperature indicator
output before the conversion is performed. In addition,
the user must wait 200
s between sequential
conversions of the temperature indicator output.
High Range: V
OUT
= V
DD
- 4V
T
Low Range: V
OUT
= V
DD
- 2V
T
Min. V
DD
, TSRNG =
1
Min. V
DD
, TSRNG =
0
3.6V
1.8V
V
OUT
Temp. Indicator
To ADC
TSRNG
TSEN
Rev. 10-000069A
7/31/2013
V
DD
Содержание PIC12F1501
Страница 307: ...PIC16 L F1508 9 DS40001609E page 308 2011 2015 Microchip Technology Inc NOTES...
Страница 392: ...2011 2015 Microchip Technology Inc DS40001609E page 393 PIC16 L F1508 9 1RWH 6 7 7 588 8 7...
Страница 399: ...PIC16 L F1508 9 DS40001609E page 400 2011 2015 Microchip Technology Inc NOTES...