background image

60

59

QD01 : TMS320VC5416PGE-160

The TMS320VC5416PGE 144-pin low-profile quad flatpack (LQFP) pin assignments are sh
Figure 2–2.

CV

HDS1

A18
A17
DVSS
A16
D5
D4
D3
D2
D1
D0
RS
X2/CLKIN
X1
HD3
CLKOUT
DVSS
HPIENA
CVDD
CVSS
TMS
TCK
TRST
TDI
TDO
EMU1/OFF
EMU0
TOUT
HD2
HPI16
CLKMD3
CLKMD2
CLKMD1
DVSS
DVDD
BDX1
BFSX1

CVSS

A22

CVSS

DVDD

A10

HD7

A11

A12
A13
A14
A15

CVDD

HAS

DVSS
CVSS

CVDD

HCS

HR/W

READY

PS
DS

IS

R/W

MSTRB

IOSTRB

MSC

XF

HOLDA

IAQ

HOLD

BIO

MP/MC

DVDD

CVSS
BDR1

BFSR1

SS

DV

144

A21

CV

143

142

141

A8

140

A7

139

A6

138

A5

137

A4

136

HD6

135

A3

134

A2

133

A1

132

A0

131

DV

130

129

128

127

CV

126

125

HD5

124

D15

123

D14

122

D13

121

HD4

120

D12

11

9

D1

1

11

8

11

7

D9

11

6

D8

11

5

D7

11

4

D6

11

3

11

2

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

108

107

106

105

104

103

102

101

100

99

98

97

96

95

94

93

92

91

90

89

88

87

86

85

84

83

82

81

80

79

78

77

76

75

74

73

SS

CV

BCLKR1

HCNTL0

SS

BCLKR0

BCLKR2

BFSR0

BFSR2

BDR0

HCNTL1

BDR2

BCLKX0

BCLKX2

SS

DD

SS

HD0

BDX0

BDX2

IACK

HBIL

NMI

INT0

INT1

INT2

INT3

DD

HD1

SS

HRDY

HINT

111

CV

11

0

A19

109

70

71

72

BCLKX1

SS

DV

D10

BFSX2

SS

A20

DV

DD

CV

HDS2

SS

DV

DV

CV

DV

DV

CV

CV

DD

DD

DD

DD

SS

BFSX0

A9

Signal Descriptions

Table 2–2 lists each signal, function, and operating mode(s) grouped by function. See Section 2.2 for exact
pin locations based on package type.

Table 2–2. Signal Descriptions  

TERMINAL

I/O†

DESCRIPTION

TERMINAL

NAME

I/O†

DESCRIPTION

DATA SIGNALS

A22

(MSB)

A21
A20
A19
A18
A17
A16
A15
A14
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0

(LSB)

I/O/Z‡§

Parallel address bus A22 [most significant bit (MSB)] through A0 [least significant bit (LSB)]. The sixteen LSB
lines, A0 to A15, are multiplexed to address external memory (program, data) or I/O. The seven MSB lines, A16
to A22, address external program space memory. A22–A0 is placed in the high-impedance state in the hold
mode. A22–A0 also goes into the high-impedance state when OFF is low.

A17–A0 are inputs in HPI16 mode. These pins can be used to address internal memory via the host-port interface
(HPI) when the HPI16 pin is high. These pins also have Schmitt trigger inputs.

The address bus has a bus holder feature that eliminates passive components and the power dissipation
associated with them. The bus holder keeps the address bus at the previous logic level when the bus goes into
a high-impedance state.

D15

(MSB)

D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0

(LSB)

I/O/Z‡§

Parallel data bus D15 (MSB) through D0 (LSB). D15–D0 is multiplexed to transfer data between the core CPU
and external data/program memory or I/O devices or HPI in HPI16 mode (when HPI16 pin is high). D15–D0 is
placed in the high-impedance state when not outputting data or when RS or HOLD is asserted. D15–D0 also goes
into the high-impedance state when OFF is low. These pins also have Schmitt trigger inputs.

The data bus has a bus holder feature that eliminates passive components and the power dissipation associated
with them. The bus holder keeps the data bus at the previous logic level when the bus goes into the
high-impedance state. The bus holders on the data bus can be enabled/disabled under software control.

† I = Input, O = Output, Z = High-impedance, S = Supply
‡ These pins have Schmitt trigger inputs.
§ This pin has an internal bus holder controlled by way of the BSCR register.
¶ This pin has an internal pullup resistor.
# This pin has an internal pulldown resistor.

Table 2–2. Signal Descriptions (Continued)

TERMINAL

NAME

DESCRIPTION

I/O†

TERMINAL

NAME

DESCRIPTION

I/O†

INITIALIZATION, INTERRUPT AND RESET OPERATIONS

IACK

O/Z

Interrupt acknowledge signal. IACK indicates receipt of an interrupt and that the program counter is fetching the
interrupt vector location designated by A15–A0. IACK also goes into the high-impedance state when OFF is low.

INT0‡
INT1‡
INT2‡
INT3‡

I

External user interrupt inputs. INT0–INT3 are maskable and are prioritized by the interrupt mask register (IMR)
and the interrupt mode bit. INT0 –INT3 can be polled and reset by way of the interrupt flag register (IFR).

NMI‡

I

Nonmaskable interrupt. NMI is an external interrupt that cannot be masked by way of the INTM or the IMR. When
NMI is activated, the processor traps to the appropriate vector location.

RS‡

I

Reset. RS causes the digital signal processor (DSP) to terminate execution and forces the program counter to
0FF80h. When RS is brought to a high level, execution begins at location 0FF80h of program memory. RS affects
various registers and status bits.

MP/MC

I

Microprocessor/microcomputer mode select. If active low at reset, microcomputer mode is selected, and the
internal program ROM is mapped into the upper 16K words of program memory space. If the pin is driven high
during reset, microprocessor mode is selected, and the on-chip ROM is removed from program space. This pin
is only sampled at reset, and the MP/MC bit of the processor mode status (PMST) register can override the mode
that is selected at reset.

MULTIPROCESSING SIGNALS

BIO‡

I

Branch control. A branch can be conditionally executed when BIO is active. If low, the processor executes the
conditional instruction. The BIO condition is sampled during the decode phase of the pipeline for the XC
instruction, and all other instructions sample BIO during the read phase of the pipeline.

XF

O/Z

External flag output (latched software-programmable signal). XF is set high by the SSBX XF instruction, set low
by RSBX XF instruction or by loading ST1. XF is used for signaling other processors in multiprocessor
configurations or used as a general-purpose output pin. XF goes into the high-impedance state when OFF is low,
and is set high at reset.

MEMORY CONTROL SIGNALS

DS
PS
IS

O/Z

Data, program, and I/O space select signals. DS, PS, and IS are always high unless driven low for
communicating to a particular external space. Active period corresponds to valid address information. DS, PS,
and IS are placed into the high-impedance state in the hold mode; these signals also go into the high-impedance
state when OFF is low.

MSTRB

O/Z

Memory strobe signal. MSTRB is always high unless low-level asserted to indicate an external bus access to
data or program memory. MSTRB is placed in the high-impedance state in the hold mode; it also goes into the
high-impedance state when OFF is low.

READY

I

Data ready. READY indicates that an external device is prepared for a bus transaction to be completed. If the
device is not ready (READY is low), the processor waits one cycle and checks READY again. Note that the
processor performs ready detection if at least two software wait states are programmed. The READY signal is
not sampled until the completion of the software wait states.

R/W

O/Z

Read/write signal. R/W indicates transfer direction during communication to an external device. R/W is normally
in the read mode (high), unless it is asserted low when the DSP performs a write operation. R/W is placed in the
high-impedance state in the hold mode; and it also goes into the high-impedance state when OFF is low.

IOSTRB

O/Z

I/O strobe signal. IOSTRB is always high unless low-level asserted to indicate an external bus access to an I/O
device. IOSTRB is placed in the high-impedance state in the hold mode; it also goes into the high-impedance
state when OFF is low.

HOLD

I

Hold input. HOLD is asserted to request control of the address, data, and control lines. When acknowledged by
the 5416, these lines go into the high-impedance state.

† I = Input, O = Output, Z = High-impedance, S = Supply
‡ These pins have Schmitt trigger inputs.
§ This pin has an internal bus holder controlled by way of the BSCR register.
¶ This pin has an internal pullup resistor.
# This pin has an internal pulldown resistor.

Table 2–2. Signal Descriptions (Continued)

TERMINAL

NAME

DESCRIPTION

I/O†

TERMINAL

NAME

DESCRIPTION

I/O†

MEMORY CONTROL SIGNALS (CONTINUED)

HOLDA

O/Z

Hold acknowledge. HOLDA indicates to the external circuitry that the processor is in a hold state and that the
address, data, and control lines are in the high-impedance state, allowing them to be available to the external
circuitry. HOLDA also goes into the high-impedance state when OFF is low.

MSC

O/Z

Microstate complete. MSC indicates completion of all software wait states. When two or more software wait
states are enabled, the MSC pin goes active at the beginning of the first software wait state and goes inactive
high at the beginning of the last software wait state. If connected to the READY input, MSC forces one external
wait state after the last internal wait state is completed. MSC also goes into the high-impedance state when OFF
is low.

IAQ

O/Z

Instruction acquisition signal. IAQ is asserted (active low) when there is an instruction address on the address
bus and goes into the high-impedance state when OFF is low.

TIMER SIGNALS

CLKOUT

O/Z

Clock output signal. CLKOUT can represent the machine-cycle rate of the CPU divided by 1, 2, 3, or 4 as
configured in the bank-switching control register (BSCR). Following reset, CLKOUT represents the
machine-cycle rate divided by 4.

CLKMD1‡
CLKMD2‡
CLKMD3‡

I

Clock mode select signals. CLKMD1–CLKMD3 allow the selection and configuration of different clock modes
such as crystal, external clock, and PLL mode. The external CLKMD1–CLKMD3 pins are sampled to determine
the desired clock generation mode while RS is low. Following reset, the clock generation mode can be
reconfigured by writing to the internal clock mode register in software.

X2/CLKIN‡

I

Clock/oscillator input. If the internal oscillator is not being used, X2/CLKIN functions as the clock input. (This is
revision-dependent, see Section 3.10 for additional information.)

X1

O

Output pin from the internal oscillator for the crystal. If the internal oscillator is not used, X1 should be left
unconnected. X1 does not go into the high-impedance state when OFF is low. (This is revision-dependent, see
Section 3.10 for additional information.)

TOUT

O/Z

Timer output. TOUT signals a pulse when the on-chip timer counts down past zero. The pulse is one CLKOUT
cycle wide. TOUT also goes into the high-impedance state when OFF is low.

MULTICHANNEL BUFFERED SERIAL PORT 0 (McBSP #0), MULTICHANNEL BUFFERED SERIAL PORT 1 (McBSP #1),

AND MULTICHANNEL BUFFERED SERIAL PORT 2 (McBSP #2) SIGNALS

BCLKR0‡
BCLKR1‡
BCLKR2‡

I/O/Z

Receive clock input. BCLKR can be configured as an input or an output; it is configured as an input following
reset. BCLKR serves as the serial shift clock for the buffered serial port receiver.

BDR0
BDR1
BDR2

I

Serial data receive input

BFSR0
BFSR1
BFSR2

I/O/Z

Frame synchronization pulse for receive input. BFSR can be configured as an input or an output; it is configured
as an input following reset. The BFSR pulse initiates the receive data process over BDR.

BCLKX0‡
BCLKX1‡
BCLKX2‡

I/O/Z

Transmit clock. BCLKX serves as the serial shift clock for the McBSP transmitter. BCLKX can be configured as
an input or an output, and is configured as an input following reset. BCLKX enters the high-impedance state when
OFF goes low.

BDX0
BDX1
BDX2

O/Z

Serial data transmit output. BDX is placed in the high-impedance state when not transmitting, when RS is
asserted, or when OFF is low.

BFSX0
BFSX1
BFSX2

I/O/Z

Frame synchronization pulse for transmit input/output. The BFSX pulse initiates the data transmit process over
BDX. BFSX can be configured as an input or an output, and is configured as an input following reset. BFSX goes
into the high-impedance state when OFF is low.

† I = Input, O = Output, Z = High-impedance, S = Supply
‡ These pins have Schmitt trigger inputs.
§ This pin has an internal bus holder controlled by way of the BSCR register.
¶ This pin has an internal pullup resistor.
# This pin has an internal pulldown resistor.

Table 2–2. Signal Descriptions (Continued)

TERMINAL

NAME

DESCRIPTION

I/O†

TERMINAL

NAME

DESCRIPTION

I/O†

TEST PINS

TCK‡¶

I

IEEE standard 1149.1 test clock. TCK is normally a free-running clock signal with a 50% duty cycle. The changes
on test access port (TAP) of input signals TMS and TDI are clocked into the TAP controller, instruction register,
or selected test data register on the rising edge of TCK. Changes at the TAP output signal (TDO) occur on the
falling edge of TCK.

TDI¶

I

IEEE standard 1149.1 test data input. Pin with internal pullup device. TDI is clocked into the selected register
(instruction or data) on a rising edge of TCK.

TDO

O/Z

IEEE standard 1149.1 test data output. The contents of the selected register (instruction or data) are shifted out
of TDO on the falling edge of TCK. TDO is in the high-impedance state except when the scanning of data is in
progress. TDO also goes into the high-impedance state when OFF is low.

TMS¶

I

IEEE standard 1149.1 test mode select. Pin with internal pullup device. This serial control input is clocked into
the TAP controller on the rising edge of TCK.

TRST#

I

IEEE standard 1149.1 test reset. TRST, when high, gives the IEEE standard 1149.1 scan system control of the
operations of the device. If TRST is not connected or driven low, the device operates in its functional mode, and
the IEEE standard 1149.1 signals are ignored. Pin with internal pulldown device.

EMU0

I/O/Z

Emulator 0 pin. When TRST is driven low, EMU0 must be high for activation of the OFF condition. When TRST
is driven high, EMU0 is used as an interrupt to or from the emulator system and is defined as input/output by way
of the IEEE standard 1149.1 scan system.

EMU1/OFF

I/O/Z

Emulator 1 pin/disable all outputs. When TRST is driven high, EMU1/OFF is used as an interrupt to or from the
emulator system and is defined as input/output by way of IEEE standard 1149.1 scan system. When TRST is
driven low, EMU1/OFF is configured as OFF. The EMU1/OFF signal, when active low, puts all output drivers into
the high-impedance state. Note that OFF is used exclusively for testing and emulation purposes (not for
multiprocessing applications). Therefore, for the OFF condition, the following apply:
TRST = low,
EMU0 = high
EMU1/OFF = low

† I = Input, O = Output, Z = High-impedance, S = Supply
‡ These pins have Schmitt trigger inputs.
§ This pin has an internal bus holder controlled by way of the BSCR register.
¶ This pin has an internal pullup resistor.
# This pin has an internal pulldown resistor.

Table 2–2. Signal Descriptions (Continued)

TERMINAL

NAME

DESCRIPTION

I/O†

TERMINAL

NAME

DESCRIPTION

I/O†

HOST-PORT INTERFACE SIGNALS

HD0–HD7‡§

I/O/Z

Parallel bidirectional data bus. The HPI data bus is used by a host device bus to exchange information with the
HPI registers. These pins can also be used as general-purpose I/O pins. HD0–HD7 is placed in the
high-impedance state when not outputting data or when OFF is low. The HPI data bus includes bus holders to
reduce the static power dissipation caused by floating, unused pins. When the HPI data bus is not being driven
by the 5416, the bus holders keep the pins at the previous logic level. The HPI data bus holders are disabled
at reset and can be enabled/disabled via the HBH bit of the BSCR. These pins also have Schmitt trigger inputs.

HCNTL0¶
HCNTL1¶

I

Control inputs. HCNTL0 and HCNTL1 select a host access to one of the three HPI registers. The control inputs
have internal pullups that are only enabled when HPIENA = 0. These pins are not used when HPI16 = 1.

HBIL¶

I

Byte identification. HBIL identifies the first or second byte of transfer. The HPIL input has an internal pullup
resistor that is only enabled when HPIENA = 0. This pin is not used when HPI16 = 1.

HCS‡¶

I

Chip select. HCS is the select input for the HPI and must be driven low during accesses. The chip select input
has an internal pullup resistor that is only enabled when HPIENA = 0.

HDS1‡¶
HDS2‡¶

I

Data strobe. HDS1 and HDS2 are driven by the host read and write strobes to control the transfer. The strobe
inputs have internal pullup resistors that are only enabled when HPIENA = 0.

HAS‡¶

I

Address strobe. Host with multiplexed address and data pins requires HAS to latch the address in the HPIA
register. HAS input has an internal pullup resistor that is only enabled when HPIENA = 0.

HR/W¶

I

Read/write. HR/W controls the direction of the HPI transfer. HR/W has an internal pullup resistor that is only
enabled when HPIENA = 0.

HRDY

O/Z

Ready output. HRDY goes into the high-impedance state when OFF is low. The ready output informs the host
when the HPI is ready for the next transfer.

HINT

O/Z

Interrupt output. This output is used to interrupt the host. When the DSP is in reset, HINT is driven high

.

HINT

goes into the high-impedance state when OFF is low. This pin is not used when HPI16 = 1.

HPIENA#

I

HPI module select. HPIENA must be tied to DVDD to have HPI selected. If HPIENA is left open or connected to
ground, the HPI module is not selected, internal pullup for the HPI input pins are enabled, and the HPI data bus
has holders set. HPIENA is provided with an internal pulldown resistor that is always active. HPIENA is sampled
when RS goes high and is ignored until RS goes low again.

HPI16#

I

HPI16 mode selection

SUPPLY PINS

CVSS

S

Ground. Dedicated ground for the core CPU

CVDD

S

+VDD. Dedicated power supply for the core CPU

DVSS

S

Ground. Dedicated ground for I/O pins

DVDD

S

+VDD. Dedicated power supply for I/O pins

† I = Input, O = Output, Z = High-impedance, S = Supply
‡ These pins have Schmitt trigger inputs.
§ This pin has an internal bus holder controlled by way of the BSCR register.
¶ This pin has an internal pullup resistor.
# This pin has an internal pulldown resistor.

GPIO

MBus

64K RAM

Dual Access

Program/Data

McBSP1

McBSP2

McBSP3

RHEA Bus

APLL

TIMER

JTAG

Clocks

RHEAbus

RHEA

Bridge

TI BUS

xDMA

logic

16K Program

ROM

Pbus

Cbus

Dbus

Ebus

RHEA

 bus

MBus

64K RAM

Single Access

Program

Cbus

Dbus

Ebus

Pbus

Cbus

Dbus

Ebus

Pbus

Enhanced XIO

P, C, D, E Buses and Control Signals

XIO

16HPI

54X cLEAD

16 HPI

TMS320VC5416 Functional Block Diagram

Содержание PMD671

Страница 1: ...ring to the user guide D F U without fail Service Manual 20dB R OFF OFF PHONES R L POWER MARGIN RESET ON ALC MANUAL ON ALL OFF STEREO R OFF 0dB MARK ON 6 4 5 3 2 1 0 L R ON OFF MIC HP SPK VOLUME REC L...

Страница 2: ...assis bottom Any resistance measurement less than 1 Megohms should cause unit to be repaired or corrected before AC power is applied and verified before it is return to the user customer Ref UL Standa...

Страница 3: ...ack Input Sensitivity LINE 300 mVrms 22 kohms DIGITAL IN Type RCA jack Input impedance 75 ohms Standard input level 0 5 Vp p Sampling frequency 96 88 2 48 44 1 kHz Format SPDIF IEC 958 TypeII Outputs...

Страница 4: ...is displayed on LCD with blink then press PLAY PAUSE button The check of Read write speed is started After the check finishes the number of data transfer rate kbps is displayed Start progress End Exa...

Страница 5: ...reading of the tester becomes 7 0 V 0 1 V and confirm the contrast of the LCD becames maximum 4 HOW TO DISASSEMBLE 1 Remove 7 screws as shown in Fig 1 2 Remove the battery cover 3 Remove 4 screws as...

Страница 6: ...with thumb as shown in Fig 5 and Fig 6 Cautions When removing the front panel take care not to damage the cable and connectors 6 Remove 2 screws as shown in Fig 7 4 3 4 2 5 5 6 FPC 6 7 2 Fig 5 Holdin...

Страница 7: ...ig 8 And remove the top case 8 Remove 4 connectors as shown in Fig 9 9 Remove 5 screws Then remove side panel of Audio I O side 7 8 5 8 9 4 9 5 WFKQ Fig 9 Position of 4 connectors Fig 8 Position of co...

Страница 8: ...6 10 Remove 6 screws Then remove side panel of CompactFlash side 11 Remove 7 screws Then remove the PCB 10 6 Fig 11 Position of 6 screws Fig 12 Position of 7 screws...

Страница 9: ...confirms that it was recognized as Removable Disk CompactFlash by a PC 4 pmd_prog bin of the update disk is copied to the route of Removable Disk CompactFlash 5 Disconnect USB cable from the unit the...

Страница 10: ...e Disk CompactFlash is delete NOTICE When pmd_prog bin isn t delete from the compacFlash The set becomes the mode of update of firmware every time to turn on the unit 15 Disconnect USB cable from the...

Страница 11: ...SB ONLINE is displayed on LCD 3 It confirms that it was recognized as Removable Disk CompactFlash by a PC 4 PMD671 mot of the update disk is copied to the route of Removable Disk CompactFlash 5 Click...

Страница 12: ...rod to the hole at rear panel and push the switch SU11 inside to turn off the update mode The firmware has been updated Do the next procedure 16 Connect Windows PC and PMD671 with USB cable 17 Repeat...

Страница 13: ...11 12 PF01 JF01 P001 MIC SPEAKER 7 WIRING DIAGRAM...

Страница 14: ...1A KEY PANNEL LCD DRIVER NJU6469 LCD DISPLAY USB DRIVER GL813 USB CONNECTOR DC15V or BATT DC DC POWER SUPPLY and BATTERY CHARGER 48V 3 3V for uP for DSP 3 3V 1 6V for DSP 5V 7V POWER ON OFF BATTERY MO...

Страница 15: ...0k C802 47u 100V R869 22k GND GND GND Q810 2SA1797 2 3 1 R871 100k 22k R801 Q834 2SC4116 2 3 1 Q833 2SC4116 2 3 1 R875 4 7k 48V R876 DM D810 RB160L 40 C828 0 1u Q809 74VHC14 5 6 GND PD_MUTE R882 100k...

Страница 16: ...2 1 SK_RESET NICD_MH QU12 DTC114EU 2 3 1 3VU GND GND JU08 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 5VD 3VL 3VU QU19 DTC114EU 2 3 1 GND 10k RU59 QU20 DTA114EU 2 3 1 3VU GND INTMIC_MUTE DU07 1SS...

Страница 17: ...19 20 WA01BS101 PM01 C USB DATA BUFFER...

Страница 18: ...22 21 WI01BS101 PM01 D CPLD...

Страница 19: ...23 24 WI01BS101 PM01 E DSP...

Страница 20: ...X 1 Y0 14 X1 12 X0 11 X3 15 X2 9 B 8 GND 16 Vcc 7 VEE 6 INH QA02 74HC4052 10 A 3 Y 4 Y3 2 Y2 5 Y1 13 X 1 Y0 14 X1 12 X0 11 X3 15 X2 9 B 8 GND 16 Vcc 7 VEE 6 INH QA08 74HC4052 10 A 3 Y 4 Y3 2 Y2 5 Y1 1...

Страница 21: ...27 28 WI01BS101 PM01 G MIC AMP BLOCK 2...

Страница 22: ...30 29 PM01 H ALC LIMITER AMP BLOCK WI01BS101...

Страница 23: ...31 32 PHONES P001 PH01 PM01 J Analog Output BLOCK WI01BS101 PW06...

Страница 24: ...34 33 PM01 K CODEC WI01BS101...

Страница 25: ...5 DTC123JE 2 3 1 GND QF07 DTC123JE 2 3 1 DF05 NSCW215 RF03 100 DF06 NSCW215 RF11 100 5VD 5VD SF05 3 1 2 4 5 SF03 3 1 2 4 5 SF04 3 1 2 4 5 SEG42 SEG43 SEG44 SEG45 SEG46 SEG47 SEG48 SEG49 SEG50 SEG51 SE...

Страница 26: ...1 2 3 4 5 SF52 ANALOG OUT 1 2 3 4 5 6 7 8 9 10 SF54 LEVEL CONT 1 2 3 4 5 6 7 8 9 10 SF53 REPEAT 1 2 3 4 5 6 7 8 9 10 DF52 1SS176 SF62 FF 1 2 SF66 STOP 1 2 SF65 MARK D 1 2 SF64 MARK U 1 2 SF56 PRE REC...

Страница 27: ...6 SF01 A8 SF02 B8 SF03 A7 SF04 A6 SF05 B6 VF01 A1 CF04 B2 CF05 B3 CF06 B3 CF07 B6 CF08 B4 CF09 A8 CF10 B8 CF11 A8 CF12 B8 CF13 A7 CF15 A7 CF21 A7 CF23 A8 DF02 A8 JF01 B7 JF02 B6 LF01 A8 QF01 A4 QF02 B...

Страница 28: ...824 F2 R827 E4 R829 D4 R832 F5 R835 E3 R837 F5 R838 E3 R839 F5 R840 E4 R844 E5 R846 E4 R847 F3 R848 F4 R851 F2 R854 E6 R857 E7 R859 C4 R862 E7 R863 D4 R864 D3 R865 G2 R868 G2 R869 E6 R874 F2 R876 F2 R...

Страница 29: ...8 E2 QX09 E2 QX10 E2 R309 E8 R310 E8 R312 E9 R313 E8 R315 E8 R316 E8 R317 E8 R318 E8 R319 E8 R320 E8 R321 E8 R328 D8 R329 D8 R332 E8 R334 E8 R337 F9 R338 E8 R339 F9 R341 F8 R342 F9 R343 F8 R345 F8 R34...

Страница 30: ...7 D4 U108 B5 US01 A2 US02 B4 US03 B4 US04 C5 JC02 A1 RC64 A1 U2 A2 CA72 B4 CA73 B4 CA74 A4 CA75 B3 CA76 B4 CJ03 B2 CJ04 A3 CJ08 B1 CJ09 B1 CJ10 B1 JA02 A4 JA03 A5 JA04 B5 JJ02 A2 JJ03 B3 JU12 B2 JU13...

Страница 31: ...for DIT DIR 26 PA5 I O O XCTL0 OFF for DIT DIR 27 PA6 I O O XCTL1 OFF for DIT DIR 28 PA7 IRQ7 I O O BACKLIGHT H H OFF for LCD 29 P67 I O I AC_IN H L 30 P66 I O I RTC_INT H L 31 P65 IRQ1 I O I Power SW...

Страница 32: ...p 87 PF1 I O I KEY_IN1 L H Pull Up 88 PF0 I O I KEY_IN0 L H 89 P50 I O O LINE MUTE H L 90 P51 I O O HP MUTE H L 91 P52 I O O INTMIC MUTE H L 92 P53 I O O PHANTOM MUTE OFF 93 ACVV I 5V 94 Vref Ground 9...

Страница 33: ...D10 Data10 when external ROM mode NC ECPUD4 EROMD11 36 B Pull low NC Embedded CPU mode ECPUD4 Data4 when external CPU mode EROMD11 Data11 when external ROM mode NC ECPUD3 EROMD12 37 B Pull low NC Embe...

Страница 34: ...P SN I Parallel Serial Select Pin L Serial Mode H Parallel Mode 10 XTL0 I X tal Frequency Select 0 Pin 11 XTL1 I X tal Frequency Select 1 Pin 12 VIN I V bit Input Pin for Transmitter Output 13 TVDD I...

Страница 35: ...n in Serial Mode IIC L 33 SDA I O Control Data Pin in Serial Mode IIC H OCKS1 I Output Clock Select 1 Pin in Parallel Mode CCLK I Control Data Clock Pin in Serial Mode IIC L 34 SCL I Control Data Cloc...

Страница 36: ...Hz 4 5 to 5 5V fs 96kHz 8 DGND Digital Ground Pin 0V 9 SDTO O Serial Data Output Pin Data bits are presented MSB first in 2 s complement format This pin is L in the power down mode 10 LRCK I Left Righ...

Страница 37: ...53 Q403 AK4384...

Страница 38: ...2 Y2 A3 Y3 GND L H Inputs Outputs A H L Y Y1 A1 A2 A3 A4 A5 A6 Y2 Y3 Y4 Y5 Y6 1 3 5 9 11 13 2 4 6 8 10 12 Y A Q808 Q809 MC74VHC14DT In System Programming Controller JTAG Controller I O Blocks Function...

Страница 39: ...VERTING OUTPUTS LOGIC DIAGRAM L L H X L L X H L H X X FUNCTION TABLE Inputs Output Y OE1 OE2 A L H Z Z PIN ASSIGNMENT A5 A3 A2 A1 OE1 GND A8 A7 A6 A4 5 4 3 2 1 10 9 8 7 6 14 15 16 17 18 19 20 11 12 13...

Страница 40: ...56 Q307 QA01 QA02 QA08 QB08 TC74HC4052AFT QB06 QC02 QC03 BU4053BCFV Refer HC4053A Q305 NJM2070M...

Страница 41: ...57 Q819 BA9741FS E2...

Страница 42: ...58 Q820 NJM2373AF QF01 NJU6469LFG1...

Страница 43: ...d goes into the high impedance state when OFF is low TIMER SIGNALS CLKOUT O Z Clock output signal CLKOUT can represent the machine cycle rate of the CPU divided by 1 2 3 or 4 as configured in the bank...

Страница 44: ...01BS851010 00M01BS851010 USER GUIDE CD ROM DFU 8 LANGUAGE 002T U1B nsp 00M01BS851010 USER GUIDE CD ROM DFU 8 LANGUAGE 005Z 00M377V064500 00M377V064500 CASE BATT CASE ASSY 010Z F B nsp 00MAA90015040 A...

Страница 45: ...mic capacitor Disc type Temp chara 2B4 50V Examples Capacity value 100 pF 101 1000 pF 102 10000 pF 103 470 pF 471 2200 pF 222 ELECTROLY CAP 5 00MEA 10 Electrolytic capacitor One way lead type Toleranc...

Страница 46: ...HZ21005000 CHIP DIODE 1SS301 DAN202U UMT PF01 DF08 00MHZ21005000 00MHZ21005000 CHIP DIODE 1SS301 DAN202U UMT PF01 DF09 00MHZ21005000 00MHZ21005000 CHIP DIODE 1SS301 DAN202U UMT PF01 DF10 00MHZ21005000...

Страница 47: ...70 PUSH SW EVQ11L05R H 5MM 160GF PF02 SF63 00MSP01013370 00MSP01013370 PUSH SW EVQ11L05R H 5MM 160GF PF02 SF64 00MSP01013370 00MSP01013370 PUSH SW EVQ11L05R H 5MM 160GF PF02 SF65 00MSP01013370 00MSP01...

Страница 48: ...EY10601070 TANTL CAP CHIP 10UF 10V PM01 C409 nsp 00MDK96104300 CER CAP C1608X7R1H104K PM01 C410 nsp 00MDK96104300 CER CAP C1608X7R1H104K PM01 C412 nsp 00MDK96104300 CER CAP C1608X7R1H104K PM01 C413 ns...

Страница 49: ...nsp 00MDK96103300 CER CAP 0 01UF 10 50V C1608JB1H103K PM01 C840 00MEY10701020 00MEY10701020 ELECT CAP 100UF 10V PM01 C841 nsp 00MDD95101300 CER CAP 100 PF 5 CG 50V GR39 PM01 C842 nsp 00MDD95101300 CE...

Страница 50: ...0MEY10402070 00MEY10402070 TANTL CAP CHIP 0 1UF 20V PM01 CB19 00MEY10402070 00MEY10402070 TANTL CAP CHIP 0 1UF 20V PM01 CB20 nsp 00MDK96104300 CER CAP C1608X7R1H104K PM01 CB21 nsp 00MDK96104300 CER CA...

Страница 51: ...7R1H104K PM01 CD08 nsp 00MDK96104300 CER CAP C1608X7R1H104K PM01 CD09 nsp 00MDK96104300 CER CAP C1608X7R1H104K PM01 CD10 nsp 00MDK98105200 CER CAP 1UF 10V F PM01 CD11 nsp 00MDK98105200 CER CAP 1UF 10V...

Страница 52: ...CAP C1608X7R1H104K PM01 CX14 nsp 00MDK96104300 CER CAP C1608X7R1H104K PM01 CX15 00MEY10601620 00MEY10601620 ELECT CAP 10UF 16V PM01 CX16 nsp 00MDK96104300 CER CAP C1608X7R1H104K PM01 CX17 nsp 00MDK96...

Страница 53: ...M01 DU01 00MHZ21005000 00MHZ21005000 CHIP DIODE 1SS301 DAN202U UMT PM01 DU03 00MHZ21005000 00MHZ21005000 CHIP DIODE 1SS301 DAN202U UMT PM01 DU04 00MHZ21005000 00MHZ21005000 CHIP DIODE 1SS301 DAN202U U...

Страница 54: ...8 nsp 00MNN05102610 CHIP RES 1K OHM 5 1 16W PM01 LU19 nsp 00MNN05102610 CHIP RES 1K OHM 5 1 16W PM01 LU20 nsp 00MNN05102610 CHIP RES 1K OHM 5 1 16W PM01 LU21 nsp 00MNN05102610 CHIP RES 1K OHM 5 1 16W...

Страница 55: ...C10106530 00MHC10106530 IC S 8521D33MC BXS PM01 Q817 00MBA10026210 00MBA10026210 SEMICON COMP DTA114EU PM01 Q818 00MHX117971A0 00MHX117971A0 CHIP TRS 2SA1797 PM01 Q819 00MHC10226210 00MHC10226210 IC B...

Страница 56: ...113000 SEMICON COMP DTA144TE RN2123 UN9110 PM01 QB03 00MHC406621Y0 00MHC406621Y0 IC BU4066BCFV PM01 QB04 00MHC406621Y0 00MHC406621Y0 IC BU4066BCFV PM01 QB05 00MHC10168090 00MHC10168090 IC NJM2068V 0P...

Страница 57: ...MBA20035210 SEMICON COMP DTC114EU PM01 QU12 00MBA20035210 00MBA20035210 SEMICON COMP DTC114EU PM01 QU17 00MBA20035210 00MBA20035210 SEMICON COMP DTC114EU PM01 QU18 00MBA10026210 00MBA10026210 SEMICON...

Страница 58: ...RES 100 OHM 5 1 16W PM01 R360 nsp 00MNN05101610 CHIP RES 100 OHM 5 1 16W PM01 R361 nsp 00MNN05101610 CHIP RES 100 OHM 5 1 16W PM01 R362 nsp 00MNN05101610 CHIP RES 100 OHM 5 1 16W PM01 R363 nsp 00MNN05...

Страница 59: ...N05470610 CHIP RES 47 OHM 5 1 16W PM01 R442 nsp 00MNN05000610 CHIP RES 0 OHM 5 1 16W PM01 R459 nsp 00MNN05000610 CHIP RES 0 OHM 5 1 16W PM01 R801 nsp 00MNN05223610 CHIP RES 22K OHM 5 1 16W PM01 R802 0...

Страница 60: ...S 22K OHM 5 1 16W PM01 R869 00MNI01223110 00MNI01223110 CHIP RES 22K OHM 1 1 10W PM01 R871 nsp 00MNN05104610 CHIP RES 100K OHM 5 1 16W PM01 R872 nsp 00MNN05393610 CHIP RES 39K OHM 5 1 16W PM01 R873 00...

Страница 61: ...W PM01 R944 00MNI05010110 00MNI05010110 CHIP RES 1 OHM 5 1 10W PM01 R945 nsp 00MNN05000610 CHIP RES 0 OHM 5 1 16W PM01 R946 00MNI05010110 00MNI05010110 CHIP RES 1 OHM 5 1 10W PM01 R947 nsp 00MNN051036...

Страница 62: ...NN05103610 CHIP RES 10K OHM 5 1 16W PM01 RA93 nsp 00MNN05103610 CHIP RES 10K OHM 5 1 16W PM01 RA94 nsp 00MNN05103610 CHIP RES 10K OHM 5 1 16W PM01 RB01 nsp 00MNN05103610 CHIP RES 10K OHM 5 1 16W PM01...

Страница 63: ...HIP RES 100K OHM 5 1 16W PM01 RC25 nsp 00MNN05182610 CHIP RES 1 8K OHM 5 1 16W PM01 RC26 nsp 00MNN05182610 CHIP RES 1 8K OHM 5 1 16W PM01 RC27 nsp 00MNN05473610 CHIP RES 47K OHM 5 1 16W PM01 RC28 nsp...

Страница 64: ...000610 CHIP RES 0 OHM 5 1 16W PM01 RD18 nsp 00MNN05103610 CHIP RES 10K OHM 5 1 16W PM01 RD19 00MFC90020110 00MFC90020110 FERRITE CORE BLM11B601S CHIP FERRITE PM01 RD21 00MFC90020110 00MFC90020110 FERR...

Страница 65: ...RRITE PM01 RP18 00MFC90020110 00MFC90020110 FERRITE CORE BLM11B601S CHIP FERRITE PM01 RP19 00MFC90020110 00MFC90020110 FERRITE CORE BLM11B601S CHIP FERRITE PM01 RP20 00MFC90020110 00MFC90020110 FERRIT...

Страница 66: ...P RES 10K OHM 5 1 16W PM01 RU83 nsp 00MNN05103610 CHIP RES 10K OHM 5 1 16W PM01 RU84 nsp 00MNN05473610 CHIP RES 47K OHM 5 1 16W PM01 RU85 nsp 00MNN05473610 CHIP RES 47K OHM 5 1 16W PM01 RU86 nsp 00MNN...

Страница 67: ...10UF 25V P001 CJ11 nsp 00MDD95470300 CER CAP 47 PF 5 CG 50V GR39 P001 CJ12 nsp 00MDD95470300 CER CAP 47 PF 5 CG 50V GR39 P001 CJ21 00MEY22602570 00MEY22602570 TANTL CAP CHIP 22UF 25V CHIP TANTALUM CAP...

Страница 68: ...RES 1K OHM 5 1 16W P001 RU07 nsp 00MNN05101610 CHIP RES 100 OHM 5 1 16W P001 RU60 nsp 00MNN05000610 CHIP RES 0 OHM 5 1 16W I O 2 PCB 00MWI01BS106 P002 JU16 00MYJ01004520 00MYJ01004520 JACK 4P MINI JAC...

Отзывы: