Linear Technology LTC 3115-1 Скачать руководство пользователя страница 16

LTC3115-1

16

Rev. C

For more information 

www.analog.com

OPERATION

V

CC

 REGULATOR

An internal low dropout regulator generates the 4.45V 

(nominal) V

CC

 rail from V

IN

. The V

CC

 rail powers the inter-

nal control circuitry and power device gate drivers of the 

LTC3115-1. The V

CC

 regulator is disabled in shutdown 

to reduce quiescent current and is enabled by forcing 

the RUN pin above its logic threshold. The V

CC

 regula-

tor includes current limit protection to safeguard against 

short circuiting of the V

CC

 rail. For applications where the 

output voltage is set to 5V, the V

CC

 rail can be driven from 

the output rail through a Schottky diode. Bootstrapping in 

this manner can provide a significant efficiency improve-

ment, particularly at large voltage step down ratios, and 

may also allow operation down to a lower input voltage. 

The maximum operating voltage for the V

CC

 pin is 5.5V. 

When forcing V

CC

 externally, care must be taken to ensure 

that this limit is not exceeded.

UNDERVOLTAGE LOCKOUT

To eliminate erratic behavior when the input voltage is 

too low to ensure proper operation, the LTC3115-1 incor-

porates internal undervoltage lockout (UVLO) circuitry. 

There are two UVLO comparators, one that monitors V

IN

 

and another that monitors V

CC

. The buck-boost converter 

is disabled if either V

IN

 or V

CC

 falls below its respective 

UVLO threshold. The input voltage UVLO comparator has 

a falling threshold of 2.4V (typical). If the input voltage 

falls below this level all switching is disabled until the 

input voltage rises above 2.6V (nominal). The V

CC

 UVLO 

has a falling threshold of 2.4V. If V

CC

 falls below this 

threshold the buck-boost converter is prevented from 

switching until V

CC

 rises above 2.6V. 

Depending on the particular application circuit it is pos-

sible that either of these UVLO thresholds could be the 

factor limiting the minimum input operating voltage of 

the LTC3115-1. The dominant factor depends on the volt-

age drop between V

IN

 and V

CC

 which is determined by 

the dropout voltage of the V

CC

 regulator and is propor-

tional to the total load current drawn from V

CC

. The load 

current on the V

CC

 regulator is principally generated by 

the gate driver supply currents which are proportional to 

operating frequency and generally increase with larger 

input and output voltages. As a result, at higher switching  

frequencies and higher input and output voltages the V

CC

 

regulator dropout voltage will increase, making it more 

likely that the V

CC

 UVLO threshold could become the lim-

iting factor. Curves provided in the Typical Performance 

Characteristics section of this data sheet show the typical 

V

CC

 current and can be used to estimate the V

CC

 regulator 

dropout voltage in a particular application. In applications 

where V

CC

 is bootstrapped (powered by V

OUT

 or by an 

auxiliary supply rail through a Schottky diode) the mini-

mum input operating voltage will be limited only by the 

input voltage UVLO threshold.

RUN PIN COMPARATOR

In addition to serving as a logic-level input to enable the 

IC, the RUN pin features an accurate internal compara-

tor allowing it to be used to set custom rising and falling 

input undervoltage lockout thresholds with the addition 

of an external resistor divider. When the RUN pin is driven 

above its logic threshold (typically 0.8V) the V

CC

 regulator 

is enabled which provides power to the internal control 

circuitry of the IC and the accurate RUN pin comparator 

is enabled. If the RUN pin voltage is increased further 

so that it exceeds the RUN comparator threshold (1.21V 

nominal), the buck-boost converter will be enabled. 
If the RUN pin is brought below the RUN comparator 

threshold, the buck-boost converter will inhibit switching, 

but the V

CC

 regulator and control circuitry will remain 

powered unless the RUN pin is brought below its logic 

threshold. Therefore, in order to place the part in shut-

down and reduce the input current to its minimum level 

(3µA typical) it is necessary to ensure that the RUN pin 

is brought below the worst-case logic threshold (0.3V). 

The RUN pin is a high voltage input and can be connected 

directly to V

IN

 to continuously enable the part when the 

input supply is present. If the RUN pin is forced above 

approximately 5V it will sink a small current as given by 

the following equation:

 

 

I

RUN

V

RUN

– 5V

5MΩ

With the addition of an external resistor divider as shown 

in Figure 3, the RUN pin can be used to establish a custom 

Содержание LTC 3115-1

Страница 1: ...C3115 1 is available in thermally enhanced 16 lead 4mm 5mm 0 75mm DFN and 20 lead TSSOP packages Efficiency vs VIN APPLICATIONS n n Wide VIN Range 2 7V to 40V n n Wide VOUT Range 2 7V to 40V n n 1A Ou...

Страница 2: ...to 150 C LTC3115MP 1 55 C to 150 C Storage Temperature Range 65 C to 150 C Lead Temperature Soldering 10 sec FE 300 C 16 15 14 13 12 11 10 9 PGND 17 1 2 3 4 5 6 7 8 PWM SYNC SW1 PVIN BST1 BST2 PVCC V...

Страница 3: ...ality and reliability requirements of automotive applications These models are designated with a W suffix Only the automotive grade products shown are available for use in automotive applications Cont...

Страница 4: ...ange The LTC3115H 1 specifications are guaranteed over the 40 C to 150 C operating junction temperature range The LTC3115MP 1 specifications are guaranteed over the 55 C to 150 C operating junction te...

Страница 5: ...CIENCY 80 100 0 10 1 31151 G01 40 50 70 90 30 20 VIN 3 6V VIN 5V VIN 12V VIN 24V VIN 36V LOAD CURRENT A 0 01 70 EFFICIENCY 80 90 100 0 1 1 31151 G02 60 50 40 30 VIN 5V VIN 12V VIN 24V VIN 36V LOAD CUR...

Страница 6: ...0 100 31151 G08 60 65 75 85 55 50 VIN 5V VIN 12V VIN 24V VIN 36V LOAD CURRENT mA 0 1 70 EFFICIENCY 80 90 1 10 100 31151 G09 60 65 75 85 55 50 VIN 12V VIN 18V VIN 24V VIN 36V INPUT VOLTAGE V 2 0 INPUT...

Страница 7: ...OM V IN 20V 0 4 0 2 0 1 0 0 5 0 2 10 20 31151 G19 0 3 0 3 0 4 0 1 30 40 TEMPERATURE C 50 1 0 CHANGE FROM 25 C 0 8 0 4 0 2 0 1 0 0 4 0 50 31151 G20 0 6 0 6 0 8 0 2 100 150 INPUT VOLTAGE V 0 1 0 CHANGE...

Страница 8: ...V IVCC 20mA TEMPERATURE C 50 1 0 CHANGE FROM 25 C 0 8 0 4 0 2 0 1 0 0 4 0 50 31151 G24 0 6 0 6 0 8 0 2 100 150 TEMPERATURE C 50 CHANGE FROM 25 C 0 0 5 1 0 150 31151 G25 0 5 1 0 2 0 0 50 100 1 5 2 0 1...

Страница 9: ...TIME ns 80 100 120 140 180 3 3 5 4 4 5 31151 G36 5 5 5 160 fSW 300kHz fSW 1MHz fSW 2MHz SWITCHING FREQUENCY kHz 0 140 160 200 1500 31151 G37 120 100 500 1000 2000 80 60 180 MINIMUM LOW TIME ns VCC 2 7...

Страница 10: ...DIV VOUT 200mV DIV LOAD CURRENT 1A DIV FRONT PAGE APPLICATION 200 s DIV 31151 G40 INDUCTOR CURRENT 2A DIV VOUT 50mV DIV L 15 H COUT 22 F ILOAD 25mA 20 s DIV 31151 G41 INDUCTOR CURRENT 0 5A DIV VOUT 5...

Страница 11: ...to minimize stray coupling to the switch pin traces RT Pin 8 Pin 9 Oscillator Frequency Programming Pin A resistor placed between this pin and ground sets the switching frequency of the buck boost con...

Страница 12: ...1 20 Exposed Pad Pin 21 Power Ground Connections These pins should be connected to the power ground in the applica tion The exposed pad is the power ground connection It must be soldered to the PCB an...

Страница 13: ...l PWM MODE OPERATION With the PWM SYNC pin forced high or driven by an exter nal clock the LTC3115 1 operates in a fixed frequency pulse width modulation PWM mode using a voltage mode control loop Thi...

Страница 14: ...oop gain by the reciprocal of the input voltage in order to minimize loop gain variation over changes in the input voltage This simplifies design of the compensation network and optimizes the transien...

Страница 15: ...hing frequen cies especially above 750kHz will reduce the maximum output current that can be supplied see the Typical Performance Characteristics for details Burst Mode OPERATION When the PWM SYNC pin...

Страница 16: ...on the VCC regulator is principally generated by the gate driver supply currents which are proportional to operating frequency and generally increase with larger input and output voltages As a result...

Страница 17: ...n in many applications the VCC regulator is operated with large input to output voltage differentials resulting in significant levels of power dis sipation in its pass element which can add significan...

Страница 18: ...educing the peak current to be closer to the average output current and therefore minimize resistive losses due to high RMS currents However a larger induc tor value within any given inductor family w...

Страница 19: ...sults from the output current being dis continuous They provide a good approximation to the ripple at any significant load current but underestimate the output voltage ripple at very light loads where...

Страница 20: ...switching con verter applications due to their small size low ESR and low leakage currents However many ceramic capacitors designed for power applications experience significant loss in capacitance fr...

Страница 21: ...the amount of hysteresis can be increased further through the addition of an additional resistor RH as shown in Figure 5 When using the additional RH resistor the rising RUN pin threshold remains as g...

Страница 22: ...of the power stage As a result the buck mode gain is well approximated by a constant as given by the following equation GBUCK 29 7 R R RS 29 7 29 5dB The buck mode transfer function has a single zero...

Страница 23: ...charac terized by a pair of resonant poles and a zero generated by the ESR of the output capacitor as in buck mode However in addition there is a right half plane zero which generates increasing gain...

Страница 24: ...70 Figure 7 Buck Boost Converter Bode Plot Figure 8 Error Amplifier with Type I Compensation Figure 9 Error Amplifier with Type III Compensation For charging or other applications that do not require...

Страница 25: ...ier which can push out the loop crossover to a higher frequency The Q of the power stage can have a significant influence on the design of the compensation network because it deter mines how rapidly t...

Страница 26: ...ompensation network is to determine the target crossover frequency for the compensated loop A reasonable starting point is to assume that the compensation network will generate a peak phase boost of a...

Страница 27: ...error amplifier at the point of maximum phase gain is given by GCENTER 10log 2 fP 2 fZ 3 RTOPCFB 2 dB At this point in the design process there are three con straints that have been established for t...

Страница 28: ...e expressions for the pole and zero frequencies given in the previous section Setting the frequency of the first zero fZERO1 to 3 43kHz results in the following value for RFB RFB 1 2 3nF 3 43kHz 15 4k...

Страница 29: ...0 GAIN 120 180 100 1k 10k 100k 31151 F14 1M PHASE In addition to setting the output voltage the value of RTOP is instrumental in controlling the dynamics of the compensation network When changing the...

Страница 30: ...reas This minimizes EMI and reduces inductive drops 4 Connections to all of the components shown in bold should be made as wide as possible to reduce the series resistance This will improve efficiency...

Страница 31: ...O INNER LAYER WHERE SHOWN INNER PCB LAYER ROUTES VIN UNINTERRUPTED GROUND PLANE SHOULD EXIST UNDER ALL COMPONENTS SHOWN IN BOLD AND UNDER TRACES CONNECTING TO THOSE COMPONENTS 14 PVIN 13 BST1 CBST1 CB...

Страница 32: ...AYER WHERE SHOWN INNER PCB LAYER ROUTES VIN UNINTERRUPTED GROUND PLANE SHOULD EXIST UNDER ALL COMPONENTS SHOWN IN BOLD AND UNDER TRACES CONNECTING TO THOSE COMPONENTS 17 PVIN 16 BST1 CBST1 CBST2 15 BS...

Страница 33: ...IC MA785 L1 COILCRAFT MSS1260 31151 TA02a RT 121k RFF 249k RFB 93 1k CFB 3300pF PWM Mode Efficiency vs Load Current VOUT Transient for a 0A to 2A Load Step VIN 24V VOUT Transient for a 0A to 1A Load S...

Страница 34: ...PGND LTC3115 1 L1 15 H CBST1 0 1 F CBST2 0 1 F 10V TO 40V UVLO PROGRAMMED TO 10V 1 3V HYSTERESIS CFF 22pF C1 4 7 F 24V 500mA CIN 10 F CO 10 F RTOP 1M RBOT 43 2k L1 W RTH 744 066 150 31151 TA03a RT 35...

Страница 35: ...10 F CO 22 F RTOP 1M RBOT 90 9k CIN MURATA GRM55DR61H106K CO TDK CKG57NX5R1H226M L1 W RTH 744065100 31151 TA04a RT 35 7k RFF 10k RFB 40 2k CFB 820pF R1 2M R2 255k ENABLED WHEN VIN REACHES 10 6V DISAB...

Страница 36: ...0 1 F 20V TO 40V OPEN DRAIN OUTPUT CFF 47pF C1 4 7 F 24V 1 5A CIN 10 F CO 82 F 1 F RTOP 1M RBOT 43 2k RT 47 5k CO OS CON 35SVPF82M L1 TOKO 892NBS 220M OPTIONAL INSTALL IN APPLICATIONS SUBJECT TO OUTP...

Страница 37: ...0 H D4 D3 D2 D1 CBST1 0 1 F CBST2 0 1 F USB 4 1V TO 5 5V FireWire 8V TO 36V AUTOMOTIVE 3 6V TO 40V WALL ADAPTER 4V TO 40V CFF 47pF C1 4 7 F 5V 750mA CO 47 F 2 RTOP 1M RBOT 249k CIN MURATA GRM55DR61H10...

Страница 38: ...H CBST1 0 1 F CBST2 0 1 F 6V TO 40V CFF 33pF 12V AT 500mA 1A VIN 10V C1 4 7 F CI 4 7 F CO 10 F RTOP 1M RBOT 90 9k CO MURATA GRM55DR61H106K L1 W RTH 7447789004 31151 TA07a RT 23 7k RFF 15k RFB 15k CFB...

Страница 39: ...NY SIDE 5 EXPOSED PAD SHALL BE SOLDER PLATED 6 SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE 0 40 0 10 BOTTOM VIEW EXPOSED PAD 2 44 0 10 2 SIDES 0 75 0 05 R 0 115...

Страница 40: ...74 108 0 45 0 05 0 65 BSC 4 50 0 10 6 60 0 10 1 05 0 10 6 07 239 6 07 239 4 95 195 MILLIMETERS INCHES DIMENSIONS DO NOT INCLUDE MOLD FLASH MOLD FLASH SHALL NOT EXCEED 0 150mm 006 PER SIDE NOTE 1 CONT...

Страница 41: ...implication or otherwise under any patent or patent rights of Analog Devices REVISION HISTORY REV DATE DESCRIPTION PAGE NUMBER A 4 13 Clarified Efficiency graph Clarified Absolute Maximum Rating table...

Страница 42: ...nous Buck Boost DC DC Converter VIN 2 7V to 15V VOUT 2 5V to 14V IQ 40 A ISD 1 A DFN and TSSOP Packages LTC3113 3A IOUT 2MHz Synchronous Buck Boost DC DC Converter VIN 1 8V to 5 5V VOUT 1 8V to 5 25V...

Отзывы: