![Lincoln Electric PRO-CUT 125 Скачать руководство пользователя страница 14](http://html1.mh-extra.com/html/lincoln-electric/pro-cut-125/pro-cut-125_operators-manual_1918514014.webp)
In All Cases:
• Do not pause when cutting or gouging the
metal. This is not necessary and causes opera-
tional difficulty. Pausing at the edge of the work-
piece causes poor consumable life and erratic
operation.
• Always position the torch in the best way to
keep dross and hot air from burning back into it.
• Do not carry a long arc. This may trip the safety
or fault circuits and wears consumables rapidly.
• Always hold a 1/4” standoff while cutting.
• Use the proper machine setting. Setting the
machine to maximum output will not produce
the best cutting performance in most situations.
• Use proper cutting or gouging procedures
referred to in Procedures Guideline.
• Use the nozzle with the largest orifice size that
gives an acceptable cut. This will improve parts
life. Never use the 1.1 mm dia. or 1.4 mm dia.
nozzles at outputs above the yellow range.
• The electrode should be finger tight for a snug
fit. It should not be torqued any more than 38
inch pounds.
DO NOT USE PLIERS TO OVER-
TIGHTEN THE ELECTRODE.
• Always allow the 62 second postflow time to
elapse before attempting to change the elec-
trode. Failure to do so may cause severe dam-
age to the torch head.
Suggestions for Extra Utility from the
PRO-CUT System:
• If it becomes absolutely necessary to cut
through a very thick section, the air flow at the
regulator on the back of the machine may be
lowered
to get a better result. If it is taken too
low, the power source will trip off until the pres-
sure is raised back to about 45 psi (311 kPa). It
is not wise to operate in this manner for long
periods of time because the consumable life is
severely shortened.
• In some cases where moderate or thin sections
are being cut, higher air pressure may give bet-
ter consumable life. At pressures about 70 psi
(482 kPa), the pilot arc may sputter. This may
be an annoyance but it will not damage the
torch or power source. 60 psi (414kPa) is the
minimum recommended pressure to provide
proper cooling in all situations. Feel free to
experiment with higher pressures not to exceed
150 psi (1034 kPa).
• The PRO-CUT is capable of operation with a 50
ft. (15.2 m) plasma torch. Pilot arc operation
may be slightly degraded with this torch
installed. Sputtering may occur after the pilot
arc is established and occasionally the pilot arc
may not light after the trigger is depressed.
Neither cutting performance nor machine relia-
bility will be lessened by this condition. Keep in
mind that the condition of the consumables and
air pressure level have a large impact on pilot
arc ignition.
ELECTRIC SHOCK CAN KILL.
Turn off machine at the disconnect switch on the front
of the machine before tightening, cleaning or replacing
consumables.
------------------------------------------------------------------------
• The PRO-CUT will cut with consumables that
are worn considerably. Many competitive sys-
tems require replacement consumables long
before a PRO-CUT system does. This is
because of the solid state current regulation that
the PRO-CUT has. Also, the safety reset circuit
provides a means of extending nozzle life.
Sometimes a small piece of material “spits” from
the electrode and bridges the gap between the
nozzle and the electrode. In a competitive unit,
this would often result in the destruction of the
electrode and nozzle due to overheating. This
will result in the tripping of the PRO-CUT safety
circuit. When this happens, turn the power off,
remove the nozzle and scrape any debris from
its inside cavity with a piece of sturdy wire or a
suitable drill bit. Replace the nozzle, turn on the
power and continue cutting.
• Gouging nozzles may be made from worn cut-
ting nozzles by drilling the orifice out to .125”
(3.2mm). Use a 1/8 or #31 drill bit. Take care to
center the hole and be careful because the cop-
per nozzle may seize to the drill bit.
• Use of the nozzle with the largest orifice size
that produces acceptable cutting results will
maximize consumable life. Smaller orifice sizes
constrict the arc more, raising the energy densi-
ty and the temperature. Larger orifice sizes
have the opposite effect. Small orifice nozzles
run hotter and wear faster than large orifice noz-
zles but produce a finer cut with less kerf width.
There is a certain current where each orifice
size becomes unstable because it runs too hot.
Never use the smallest .043 (1.1 mm) orifice
size at outputs above the yellow range because
it will be quickly destroyed.
– 14 –
WARNING