N
X
-2
4
0
V
1
6
P
/N
X
-3
4
0
U
1
6
P
®
D
IG
IT
A
L
O
p
e
ra
tin
g
M
a
n
u
a
l
F
C
C
L
ic
e
n
s
e
In
fo
rm
a
tio
n
Y
o
u
r
K
E
N
W
O
O
D
tr
a
n
s
c
e
iv
e
r o
p
e
ra
te
s
o
n
c
o
m
m
u
n
ic
a
tio
n
s
fr
e
q
u
e
n
c
ie
s
w
h
ic
h
a
re
s
u
b
je
c
t t
o
F
C
C
(F
e
d
e
ra
l
C
o
m
m
u
n
ic
a
tio
n
s
C
o
m
m
is
s
io
n
) R
u
le
s
&
R
e
g
u
la
tio
n
s
. F
C
C
R
u
le
s
re
q
u
ire
th
a
t a
ll
o
p
e
ra
to
rs
u
s
in
g
P
riv
a
te
L
a
n
d
M
o
b
ile
ra
d
io
fr
e
q
u
e
n
c
ie
s
o
b
ta
in
a
ra
d
io
lic
e
n
s
e
b
e
fo
re
o
p
e
ra
tin
g
th
e
ir
e
q
u
ip
m
e
n
t.
A
p
p
lic
a
tio
n
fo
r l
ic
e
n
s
e
m
u
s
t b
e
m
a
d
e
o
n
F
C
C
fo
rm
6
0
1
, s
c
h
e
d
u
le
s
D
a
n
d
H
, a
n
d
R
e
m
itt
a
n
c
e
fo
rm
1
5
9
.
F
A
X
:
F
o
rm
s
c
a
n
b
e
o
b
ta
in
e
d
b
y
fa
x
fr
o
m
th
e
F
C
C
F
a
x
-O
n
-D
e
m
a
n
d
s
y
s
te
m
. C
a
ll
1
-2
0
2
-4
1
8
-0
1
7
7
fr
o
m
y
o
u
r f
a
x
m
a
c
h
in
e
a
n
d
re
q
u
e
s
t d
o
c
u
m
e
n
t n
u
m
b
e
r 0
0
0
6
0
1
fo
r t
h
e
fo
rm
, s
c
h
e
d
u
le
s
, a
n
d
in
s
tru
c
tio
n
s
.
M
A
IL
:
F
o
rm
s
c
a
n
b
e
o
rd
e
re
d
b
y
te
le
p
h
o
n
e
, a
n
d
w
ill
b
e
s
e
n
t t
o
y
o
u
b
y
fi
rs
t c
la
s
s
m
a
il.
C
a
ll
th
e
F
C
C
F
o
rm
s
H
o
tlin
e
a
t
1
-8
0
0
-4
1
8
-F
O
R
M
(1
-8
0
0
-4
1
8
-3
6
7
6
).
IN
T
E
R
N
E
T
:
F
o
rm
6
0
1
a
n
d
in
s
tru
c
tio
n
s
c
a
n
b
e
d
o
w
n
lo
a
d
e
d
fr
o
m
th
e
F
C
C
F
o
rm
s
w
e
b
s
ite
a
t
h
ttp
://
w
w
w
.fc
c
.g
o
v
/fo
rm
p
a
g
e
.h
tm
l
B
e
fo
re
fi
llin
g
o
u
t y
o
u
r F
o
rm
6
0
1
a
p
p
lic
a
tio
n
T
e
c
h
n
ic
a
l D
a
ta
s
e
c
tio
n
, y
o
u
m
u
s
t d
e
c
id
e
o
n
w
h
ic
h
fr
e
q
u
e
n
c
ie
s
y
o
u
w
ill
o
p
e
ra
te
. S
e
e
th
e
fr
e
q
u
e
n
c
y
ta
b
le
s
b
e
lo
w
.
Q
U
E
S
T
IO
N
S
?
C
a
ll
th
e
F
C
C
fo
r l
ic
e
n
s
e
a
p
p
lic
a
tio
n
q
u
e
s
tio
n
s
a
t 1
-8
8
8
-C
A
L
L
-F
C
C
(1
-8
8
8
-2
2
5
-5
3
2
2
).
C
H
A
N
N
E
L
S
E
T
U
P
M
O
D
E
T
h
is
tr
a
n
s
c
e
iv
e
r a
llo
w
s
y
o
u
to
re
p
ro
g
ra
m
e
a
c
h
o
f t
h
e
c
h
a
n
n
e
ls
w
ith
d
iff
e
re
n
t f
re
q
u
e
n
c
ie
s
a
n
d
Q
T
(Q
u
ie
t T
a
lk
)/
D
Q
T
(D
ig
ita
l Q
u
ie
t T
a
lk
)/
R
A
N
(R
a
d
io
A
c
c
e
s
s
N
u
m
b
e
r)
s
e
tti
n
g
s
. T
h
e
ta
b
le
b
e
lo
w
lis
ts
th
e
d
e
fa
u
lt
c
h
a
n
n
e
l s
e
tti
n
g
s
fo
r
A
n
a
lo
g
a
n
d
D
ig
ita
l m
o
d
e
s
. T
h
e
tr
a
n
s
c
e
iv
e
r c
o
m
e
s
in
A
N
A
L
O
G
M
O
D
E
fo
r b
o
th
z
o
n
e
s
.
N
X
-2
4
0
V
1
6
P
A
N
A
L
O
G
M
O
D
E
D
IG
IT
A
L
M
O
D
E
Z
o
n
e
T
y
p
e
C
h
a
n
n
e
l
N
u
m
b
e
r
T
a
b
le
N
u
m
b
e
r
F
re
q
u
e
n
c
y
(M
H
z
)
Q
T
(H
z
)
Z
o
n
e
T
y
p
e
C
h
a
n
n
e
l
N
u
m
b
e
r
T
a
b
le
N
u
m
b
e
r
F
re
q
u
e
n
c
y
(M
H
z
)
R
A
N
A
n
a
lo
g
1
(1
)
1
5
1
.6
2
5
0
6
7
.0
D
ig
ita
l
(N
X
D
N
)
1
(1
)
1
5
1
.6
2
5
0
1
2
(1
)
1
5
1
.6
2
5
0
7
7
.0
2
(1
)
1
5
1
.6
2
5
0
2
3
(1
)
1
5
1
.6
2
5
0
8
8
.5
3
(1
)
1
5
1
.6
2
5
0
3
4
(1
)
1
5
1
.6
2
5
0
1
7
9
.9
4
(1
)
1
5
1
.6
2
5
0
4
5
(1
)
1
5
1
.6
2
5
0
1
0
0
.0
5
(1
)
1
5
1
.6
2
5
0
5
6
(2
)
1
5
1
.9
5
5
0
6
7
.0
6
(2
)
1
5
1
.9
5
5
0
1
7
(2
)
1
5
1
.9
5
5
0
8
2
.5
7
(2
)
1
5
1
.9
5
5
0
2
8
(2
)
1
5
1
.9
5
5
0
9
4
.8
8
(2
)
1
5
1
.9
5
5
0
3
9
(2
)
1
5
1
.9
5
5
0
1
7
9
.9
9
(2
)
1
5
1
.9
5
5
0
4
1
0
(2
)
1
5
1
.9
5
5
0
1
0
0
.0
1
0
(2
)
1
5
1
.9
5
5
0
5
1
1
(2
0
)
1
5
4
.4
9
0
0
6
7
.0
1
1
(2
0
)
1
5
4
.4
9
0
0
1
1
2
(2
1
)
1
5
4
.5
1
5
0
6
7
.0
1
2
(2
1
)
1
5
4
.5
1
5
0
1
1
3
(1
0
)
1
5
1
.5
1
2
5
6
7
.0
1
3
(1
0
)
1
5
1
.5
1
2
5
1
1
4
(1
2
)
1
5
1
.6
8
5
0
6
7
.0
1
4
(1
2
)
1
5
1
.6
8
5
0
1
1
5
(5
)
1
5
1
.7
0
0
0
6
7
.0
1
5
(5
)
1
5
1
.7
0
0
0
1
1
6
(6
)
1
5
1
.7
6
0
0
6
7
.0
1
6
(6
)
1
5
1
.7
6
0
0
1
N
X
-3
4
0
U
1
6
P
A
N
A
L
O
G
M
O
D
E
D
IG
IT
A
L
M
O
D
E
Z
o
n
e
T
y
p
e
C
h
a
n
n
e
l
N
u
m
b
e
r
T
a
b
le
N
u
m
b
e
r
F
re
q
u
e
n
c
y
(M
H
z
)
Q
T
(H
z
)
Z
o
n
e
T
y
p
e
C
h
a
n
n
e
l
N
u
m
b
e
r
T
a
b
le
N
u
m
b
e
r
F
re
q
u
e
n
c
y
(M
H
z
)
R
A
N
A
n
a
lo
g
1
(1
)
4
6
4
.5
0
0
0
6
7
.0
D
ig
ita
l
(N
X
D
N
)
1
(1
)
4
6
4
.5
0
0
0
1
2
(1
)
4
6
4
.5
0
0
0
7
7
.0
2
(1
)
4
6
4
.5
0
0
0
2
3
(1
)
4
6
4
.5
0
0
0
8
8
.5
3
(1
)
4
6
4
.5
0
0
0
3
4
(1
)
4
6
4
.5
0
0
0
1
7
9
.9
4
(1
)
4
6
4
.5
0
0
0
4
5
(1
)
4
6
4
.5
0
0
0
1
0
0
.0
5
(1
)
4
6
4
.5
0
0
0
5
6
(2
)
4
6
4
.5
5
0
0
6
7
.0
6
(2
)
4
6
4
.5
5
0
0
1
7
(2
)
4
6
4
.5
5
0
0
8
2
.5
7
(2
)
4
6
4
.5
5
0
0
2
8
(2
)
4
6
4
.5
5
0
0
9
4
.8
8
(2
)
4
6
4
.5
5
0
0
3
9
(2
)
4
6
4
.5
5
0
0
1
7
9
.9
9
(2
)
4
6
4
.5
5
0
0
4
1
0
(2
)
4
6
4
.5
5
0
0
1
0
0
.0
1
0
(2
)
4
6
4
.5
5
0
0
5
1
1
(2
2
)
4
6
1
.3
6
2
5
7
4
.4
1
1
(2
2
)
4
6
1
.3
6
2
5
1
1
2
(3
0
)
4
6
4
.4
8
7
5
7
9
.7
1
2
(3
0
)
4
6
4
.4
8
7
5
1
1
3
(3
2
)
4
6
4
.5
3
7
5
8
5
.4
1
3
(3
2
)
4
6
4
.5
3
7
5
1
1
4
(3
4
)
4
6
6
.0
3
7
5
9
1
.5
1
4
(3
4
)
4
6
6
.0
3
7
5
1
1
5
(3
6
)
4
6
6
.0
8
7
5
9
7
.4
1
5
(3
6
)
4
6
6
.0
8
7
5
1
1
6
(3
8
)
4
6
6
.1
3
7
5
1
0
3
.5
1
6
(3
8
)
4
6
6
.1
3
7
5
1
S
E
L
F
P
R
O
G
R
A
M
M
IN
G
M
O
D
E
•
T
O
C
H
A
N
G
E
T
H
E
O
P
E
R
A
T
IN
G
F
R
E
Q
U
E
N
C
IE
S
O
F
C
H
A
N
N
E
L
S
[1
]
W
ith
th
e
tr
a
n
s
c
e
iv
e
r p
o
w
e
r O
F
F
, p
re
s
s
a
n
d
h
o
ld
th
e
P
T
T
s
w
itc
h
a
n
d
S
id
e
1
k
e
y
w
h
ile
tu
rn
in
g
th
e
tr
a
n
s
c
e
iv
e
r p
o
w
e
r O
N
.
C
o
n
tin
u
e
to
h
o
ld
th
e
P
T
T
s
w
itc
h
a
n
d
S
id
e
1
k
e
y
u
n
til
th
e
L
E
D
lig
h
ts
o
ra
n
g
e
a
n
d
th
e
tr
a
n
s
c
e
iv
e
r a
n
n
o
u
n
c
e
s
“
S
e
lf.
”
[2
]
R
e
le
a
s
e
th
e
P
T
T
s
w
itc
h
a
n
d
S
id
e
1
k
e
y
.
• T
h
e
tr
a
n
s
c
e
iv
e
r a
n
n
o
u
n
c
e
s
“
Z
o
n
e
#
”
th
a
t y
o
u
w
e
re
o
p
e
ra
tin
g
.
• P
re
s
s
in
g
th
e
S
id
e
1
k
e
y
o
r S
id
e
2
k
e
y
w
ill
to
g
g
le
b
e
tw
e
e
n
Z
o
n
e
1
a
n
d
Z
o
n
e
2
.
• P
re
s
s
th
e
P
T
T
s
w
itc
h
to
c
h
o
o
s
e
th
e
Z
o
n
e
th
a
t y
o
u
w
a
n
t t
o
m
o
d
ify
.
• T
h
e
n
, t
h
e
tr
a
n
s
c
e
iv
e
r a
n
n
o
u
n
c
e
s
“
A
n
a
lo
g
”
o
r
“
D
ig
ita
l”
w
h
ic
h
e
v
e
r
th
e
s
e
le
c
te
d
z
o
n
e
w
a
s
o
p
e
ra
tin
g
.
• P
re
s
s
in
g
th
e
S
id
e
1
k
e
y
o
r S
id
e
2
k
e
y
w
ill
to
g
g
le
b
e
tw
e
e
n
“A
n
a
lo
g
”
a
n
d
“D
ig
ita
l.”
• P
re
s
s
th
e
P
T
T
s
w
itc
h
to
c
h
o
o
s
e
th
e
m
o
d
e
th
a
t y
o
u
w
a
n
t t
o
o
p
e
ra
te
in
th
e
s
e
le
c
te
d
z
o
n
e
.
• U
p
o
n
c
h
o
o
s
in
g
th
e
m
o
d
e
(a
b
o
v
e
[2
]
),
th
e
tr
a
n
s
c
e
iv
e
r a
n
n
o
u
n
c
e
s
Z
o
n
e
#
, C
h
a
n
n
e
l#
, a
n
d
“
C
h
a
n
n
e
l.”
[3
]
R
o
ta
te
th
e
C
h
a
n
n
e
l s
e
le
c
to
r t
o
y
o
u
r d
e
s
ire
d
c
h
a
n
n
e
l#
.
T
o
c
h
a
n
g
e
th
e
fr
e
q
u
e
n
c
y
o
f t
h
e
s
e
le
c
te
d
c
h
a
n
n
e
l,
P
re
s
s
th
e
P
T
T
s
w
itc
h
.
T
o
c
h
a
n
g
e
th
e
Q
T
o
r D
Q
T
, p
re
s
s
th
e
S
id
e
1
o
r 2
k
e
y
to
to
g
g
le
b
e
tw
e
e
n
“C
h
a
n
n
e
l”,
“Q
T
”,
a
n
d
“D
Q
T
”.
[If
th
e
c
h
a
n
n
e
l i
s
in
A
N
A
L
O
G
Z
o
n
e
]
a
n
d
p
re
s
s
th
e
P
T
T
.
T
o
c
h
a
n
g
e
th
e
R
A
N
o
r N
X
D
N
ID
*,
p
re
s
s
th
e
S
id
e
1
o
r 2
to
to
g
g
le
b
e
tw
e
e
n
“C
h
a
n
n
e
l”,
“R
A
N
”,
a
n
d
“N
X
D
N
ID
,”
[If
th
e
c
h
a
n
n
e
l i
s
in
D
IG
IT
A
L
Z
o
n
e
]
a
n
d
p
re
s
s
th
e
P
T
T
.
[4
]
P
re
s
s
th
e
S
id
e
1
/
S
id
e
2
k
e
y
to
in
c
re
m
e
n
t/
d
e
c
re
m
e
n
t t
h
e
ta
b
le
n
u
m
b
e
r,
to
s
e
le
c
t a
fr
e
q
u
e
n
c
y
, Q
T
/D
Q
T
/R
A
N
, a
n
d
N
X
D
N
ID
.
• P
re
s
s
a
n
d
h
o
ld
th
e
S
id
e
1
o
r S
id
e
2
k
e
y
to
in
c
re
m
e
n
t /
d
e
c
re
m
e
n
t
th
e
n
u
m
b
e
r b
y
5
a
t a
ti
m
e
.
[5
]
P
re
s
s
th
e
P
T
T
s
w
itc
h
to
s
a
v
e
th
e
s
e
tti
n
g
.
•
A
b
e
e
p
w
ill
s
o
u
n
d
.
•
R
e
p
e
a
t s
te
p
s
[3
]
to
[5
]
to
s
e
t u
p
a
n
o
th
e
r c
h
a
n
n
e
l.
[6
]
T
u
rn
th
e
tr
a
n
s
c
e
iv
e
r p
o
w
e
r O
F
F
a
n
d
th
e
n
O
N
a
g
a
in
to
a
c
tiv
a
te
th
e
n
e
w
s
e
tti
n
g
s
.
N
o
te
: T
h
e
tr
a
n
s
c
e
iv
e
r w
ill
a
u
to
m
a
tic
a
lly
r
e
tu
rn
to
n
o
rm
a
l o
p
e
ra
tio
n
if
n
o
a
c
tio
n
is
p
e
rf
o
rm
e
d
fo
r 2
0
s
e
c
o
n
d
s
.
“
S
e
lf”
Z
o
n
e
S
e
le
c
tio
n
C
h
o
o
s
e
a
Z
o
n
e
b
y
s
id
e
k
e
y
s
S
e
le
c
t b
y
P
T
T
M
o
d
e
S
e
le
c
tio
n
C
h
o
o
s
e
A
n
a
lo
g
o
r
D
ig
ita
l
b
y
s
id
e
k
e
y
s
S
e
le
c
t b
y
P
T
T
C
h
a
n
n
e
l S
e
le
c
tio
n
S
e
le
c
t a
c
h
a
n
n
e
l
to
b
e
s
e
t u
p
.
• C
h
a
n
n
e
l T
a
b
le
• Q
T
/D
Q
T
/R
A
N
• N
X
D
N
(D
ig
ita
l)
ID
S
e
le
c
t b
y
P
T
T
[A
N
A
L
O
G
]
C
h
a
n
n
e
l,
Q
T
, D
Q
T
[D
IG
IT
A
L
]
C
h
a
n
n
e
l,
R
A
N
, N
X
D
N
ID