background image

 

www.irf.com 

12

RD-0617 

 

 

Startup and Shutdown 

One of the most important aspects of any audio amplifier is the startup and shutdown 
procedures. Typically, transients occurring during these intervals can result in audible 
pop- or click-noise on the output speaker. Traditionally, these transients have been kept 
away from the speaker through the use of a series relay that connects the speaker to the 
audio amplifier only after the startup transients have passed and disconnects the 
speaker prior to shutting down the amplifier. It is interesting to note that the audible noise 
of the relay opening and closing is not considered “click noise”, although in some cases, 
it can be louder than the click noise of non-relay-based solutions.  
 
The IRAUDAMP4 does not use any series relay to disconnect the speaker from the 
audible transient noise, but rather a shunt-based click noise reduction circuit that yields 
audible noise levels that are far less that those generated by the relays they replace. 
This results in a more reliable, superior performance system.  
 
For the startup and shutdown procedures, the activation (and deactivation) of the click-
noise reduction circuit, the Class D power stage and the audio input (mute) controls 
have to be sequenced correctly to achieve the required click noise reduction. The overall 
startup sequencing, shutdown sequencing and shunt circuit operation are described 
below. 
 

Click-Noise Reduction Circuit (Solid-State Shunt) 

To reduce the turn-on and turn-off click noise, a low impedance shunting circuit is used 
to minimize the voltage across the speaker during transients. For this purpose, the 
shunting circuit must include the following characteristics: 

1)  An impedance significantly lower than that of the speaker being shunted. In this 

case, the shunt impedance is ~100 m

, compared to the nominal 4 

 speaker 

impedance. 

2)  When deactivated, the shunting circuit must be able to block voltage in both 

directions due to the bi-directional nature of the audio output. 

3)  The shunt circuit requires some form of OCP. If one of the Class D output 

MOSFETs fails, or is conducting when the speaker mute (SP MUTE) is activated, 
the shunting circuit will effectively try to short one of the two supplies (+/-B).  

 
The implemented click-noise reduction circuit is shown in Figure 9. Before startup or 
shutdown of the Class D power stage, the click-noise reduction circuit is activated 
through the SP MUTE control signal. With SP MUTE signal high, the speaker output is 
shorted through the back-to-back MOSFETs (U9 for Channel 1) with an equivalent on 
resistance of about 100 m

. The two transistors (U7 for Channel 1) are for the OCP 

circuit. 

Содержание IRAUDAMP4

Страница 1: ...Description 4 Startup and Shutdown 12 Protection 16 Typical Performance 21 Design Documents 27 CAUTION International Rectifier suggests the following guidelines for safe operation and handling of IRAU...

Страница 2: ...eping power supplies for ease of use The two channel design is scalable for power and the number of channels Applications AV receivers Home theater systems Mini component stereos Sub woofers Features...

Страница 3: ...Notes Conditions THD N 1 W THD N 10 W THD N 60 W 0 005 0 002 0 004 0 002 0 001 0 003 1 kHz Single channel driven Dynamic Range 113 dB 120 dB A weighted AES 17 filter Single channel operation Residual...

Страница 4: ...for CH1 CH2 OUT J4 Output for CH2 EXT CLK J8 External clock sync DCP OUT J9 DC protection relay output Power on and Power off Procedure Always apply or remove 35 V bus supplies at the same time Volum...

Страница 5: ...3 which filters out the Class D switching carrier signal Figure 2 Simplified Block Diagram of Class D Amplifier Power Supplies The IRAUDAMP4 has all the necessary housekeeping power supplies onboard a...

Страница 6: ...nels out of phase so that one channel consumes the energy flow from the other and does not return it to the power supply Bus voltage detection is only done on the B supply as the effect of the bus pum...

Страница 7: ...nce of the IRAUDAMP4 depends on a number of different factors The section entitled Typical Performance presents performance measurements based on the overall system including the preamp and output fil...

Страница 8: ...illating frequency is determined by the total delay time inside the control loop of the system The delay of the logic circuits the IRS20955 gate driver propagation delay the IRF6645 switching speed th...

Страница 9: ...nterference With S3 is set to INT the two settings H and L will modify the internal clock frequency by about 20 kHz to 40 kHz either higher H or lower L The actual internal frequency is set by potenti...

Страница 10: ...0 kHz to 350 kHz and then 300 kHz as the output power range where locking is achieved is extended Once locking is lost however the audio performance degrades but the increase in THD seems independent...

Страница 11: ...s both the high side and low side MOSFETs are internal to the IRS20955 and the trip levels for both MOSFETs can be set independently In this design the deadtime can be selected for optimized performan...

Страница 12: ...5 tolerance can be used Deadtime mode Deadtime R11 R9 DT Voltage DT1 15 ns 10k Open VCC DT2 25 ns 5 6k 4 7k 0 46 VCC DT3 35 ns 8 2k 3 3k 0 29 VCC DT4 45 ns Open 10k COM Figure 8 Deadtime Settings vs...

Страница 13: ...ls have to be sequenced correctly to achieve the required click noise reduction The overall startup sequencing shutdown sequencing and shunt circuit operation are described below Click Noise Reduction...

Страница 14: ...g of the voltage of CSD C3 on daughter board for CH1 of the IRS20955 is all that is required for complete sequencing The conceptual startup and shutdown timing diagrams are show in Figure 10 Figure 10...

Страница 15: ...At this point normal operation begins The entire process takes less than three seconds Figure 11 Conceptual Shutdown Sequencing of Power Supplies and Audio Section Timing Shutdown sequencing is initia...

Страница 16: ...milar manner as described above Once the fault is cleared the system will reset similar sequence as startup Figure 12 Conceptual Click Noise Reduction Sequencing at Trip and Reset CStart CSD External...

Страница 17: ...ementation Internal Faults OCP and OTP are considered internal faults These internal faults will only shutdown the particular channel by pulling low the relevant CSD pin The channel will shutdown for...

Страница 18: ...t Sensing CH1 High Side Current Sensing The high side MOSFET is protected from an overload condition and will shutdown the switching operation if the load current exceeds a preset trip level High side...

Страница 19: ...Once the fault is cleared the green Normal LED will turn on There is no manual reset option Over Voltage Protection OVP OVP will shutdown the amplifier if the bus voltage between GND and B exceeds 40...

Страница 20: ...he speakers This abnormal condition is rare and is likely caused when the power amplifier fails and one of the high side or low side IRF6645 DirectFET MOSFETs remain in the ON state DCP is activated i...

Страница 21: ...cooling the daughter board cannot handle continuous rated power 0 0 10 0 20 0 30 0 40 0 50 0 60 0 70 0 80 0 90 0 100 0 0 20 40 60 80 100 120 140 160 180 Output Power W Power Stage Efficiency Figure 16...

Страница 22: ...l unless otherwise noted Green CH1 4 2 V Output Red CH1 8 2 V Output Figure 18 Frequency Characteristics vs Load Impedance Red CH2 CH1 60 W Self Oscillator 400 kHz Green CH2 CH1 60 W Internal Clock 30...

Страница 23: ...vs Frequency Green CH1 ACD B 35 V Volume gain 21 9 V V AUX 25 filter Red CH1 ACD B 35 V Volume gain 21 9 V V 3rd order RC filter Figure 21 Stand alone Class D Power Stage THD N Ratio vs Output Power...

Страница 24: ...utput Power Green CH1 ACD B 35 V Volume gain 21 9 V V Blue CH1 ACD B 30 V Volume gain 21 9 V V Red CH1 ACD B 25 V Volume gain 21 9 V V Figure 23 THD N Ratio vs Output Power ACD 0 001 100 0 002 0 01 0...

Страница 25: ...Ratio vs Frequency Green CH1 ACD 1 W Output Yellow CH1 ACD 10 W Output Red CH1 ACD 100 W Output Figure 25 THD N Ratio vs Frequency ACD Hz 0 0001 100 0 001 0 01 0 1 1 10 20 20k 50 100 200 500 1k 2k 5k...

Страница 26: ...igure 26 Frequency Spectrum ACD Green CH1 ACD No signal Self Oscillator 400 kHz Red CH1 ACD No signal Internal Clock 300 kHz Figure 27 Residual Noise ACD Hz 140 0 120 100 80 60 40 20 d B V 10 20k 20 5...

Страница 27: ...Figure 29 Typical OCP Waveforms Showing Load Current and Switch Node Voltage VS Figure 30 Typical OCP Waveforms Showing CSD Trip and Hiccup Load current CSD pin Load current VS pin CSD pin VS pin Loa...

Страница 28: ...MBT5551 R125 10K R126 100K B Q109 MMBT5551 R139 47k B SD D105 1N4148 R138 4 7k B B Z106 18V Z107 18V R145 47K R146 47K Q110 MMBT5551 R144 10k D107 1N4148 D106 1N4148 C117 100uF 16V 5V R142 68k 5V R119...

Страница 29: ...5 0 1uF 400V R47 10 1W CH2 O C15 33pF U3 74AHC1G04 U4 74AHC1G04 C19 2 2uF 16V C20 2 2uF 16V R27 47R R28 47R C23 0 47uF 630V C24 0 47uF 630V R29 OPEN R30 OPEN C44 OPEN R64 OPEN B 6 B 15 GND 16 B 7 CH1...

Страница 30: ...uF 25V R26 10k R24 0R R22 10K C12 47pF C4 10uF 16V R20 47K CH2 O SD PWM 2 R6 8 2k D6 BAV19WDICT ND VSS2 C5 OPEN C6 OPEN C22 47nF R40 100K R37 100K Rp1 100C R34 1K R36 100K Q7 MMBT3904 Q2 MMBT5401 Rp2...

Страница 31: ...SMA MURA120 MURA120T3OSCT ND Digikey 24 D101 D102 2 SOD 123 MA2YD2300 MA2YD2300LCT ND Digikey 25 HS1 1 Heat_S6in1 HEAT SINK 294 1086 ND Digikey 26 J1A J1B 2 CON EISA 31 CON EISA31 A26453 ND Digikey 27...

Страница 32: ...y 72 U1 U2 2 SO 8 TLC081 296 7264 1 ND Digikey 73 U3 U4 2 SOT25 74AHC1G04 296 1089 1 ND Digikey 74 U7 U8 2 MINI5 XN01215 XN0121500LCT ND Digikey 75 U9 U10 2 SO 8 IRF7341 IRF7341 IR 76 U_1 1 SOIC16 CS3...

Страница 33: ...POWER 2011 04 ND Digikey 17 Q1 Q2 2 SOT23 BCE MMBT5401 MMBT5401DICT ND Digikey 18 Q3 Q4 Q5 Q6 4 DirectFET MOSFET6645 IRF6645 IRF6645 IR 19 Q7 Q8 2 SOT23 BCE MMBT3904 MMBT3904 FDICT ND Digikey 20 R1 R2...

Страница 34: ...062 in Solder mask LPI solder mask SMOBC on top and bottom layers Plating Open copper solder finish Silkscreen On top and bottom layers Daughter board Material FR4 UL 125 C Layer stack 2 Layers 1 oz...

Страница 35: ...www irf com 34 RD 0617 IRAUDAMP4 PCB Layers Motherboard Figure 35 Top Layer and Pads...

Страница 36: ...www irf com 35 RD 0617 Figure 36 Top Side Solder Mask and Silkscreen 4 0...

Страница 37: ...www irf com 36 RD 0617 Figure 37 Bottom Layer and Pads...

Страница 38: ...www irf com 37 RD 0617 Figure 38 Bottom Side Solder Mask and Silkscreen...

Страница 39: ...www irf com 38 RD 0617 Daughter Board Figure 39 PCB Layout Top Layer and Pads Figure 40 PCB Layout Top Side Solder Mask and Silkscreen...

Страница 40: ...www irf com 39 RD 0617 Figure 41 PCB Layout Bottom Layer and Pads Figure 42 PCB Layout Bottom Side Solder Mask and Silkscreen...

Страница 41: ...www irf com 40 RD 0617 IRAUDAMP4 Mechanical Construction Motherboard Figure 43 Top Side of Motherboard Showing Component Locations...

Страница 42: ...www irf com 41 RD 0617 Figure 44 Bottom Side of Motherboard Showing Component Locations...

Страница 43: ...www irf com 42 RD 0617 Daughter Board Figure 45 Top Side Showing Component Locations Figure 46 Bottom Side Showing Connector Locations 03 28 2007...

Страница 44: ...PCB Modify Motherboard PCB to add components change value and P N of some components remove IR logo and update revision name Details of changes 1 Change value of C19 C20 R39 and R40 2 Change P N of Z1...

Отзывы: