8
A microprocessor controlled special tungsten lamp emits radiation which is first optically conditioned
and beamed to the sample contained in the cuvette. The optical path is fixed by the diameter of
the cuvette. Then the light is spectrally filtered to a narrow spectral bandwidth, to obtain a light
beam of intensity
I
o
or
I.
The photoelectric cell collects the radiation
I
that is not absorbed by the sample and converts it
into an electric current, producing a potential in the mV range.
The microprocessor uses this potential to convert the incoming value into the desired measuring
unit and to display it on the LCD.
The measurement process is carried out in two phases: first the meter is zeroed and then the actual
measurement is performed.
The cuvette has a very important role because it is an optical element and thus requires particular
attention. It is important that both, the measurement and the calibration (zeroing) cuvettes, are
optically identical to provide the same measurement conditions. Whenever possible use the same
cuvette for both. It is necessary that the surface of the cuvette is clean and not scratched. This to avoid
measurement interference due to unwanted reflection and absorption of light. It is recommended
not to touch the cuvette walls with hands.
Furthermore, in order to maintain the same conditions during the zeroing and the measuring phases,
it is necessary to close the cuvette to prevent any contamination.
PRINCIPLE OF OPERA
TION
The optical system of Hanna Instruments’
HI96
series colorimeters is based on special subminiature
tungsten lamps and narrow‑band interference filters to guarantee both high performance and
reliable results.
HI96
series block diagram (optical layout)
Содержание HI96726
Страница 1: ...INSTRUCTION MANUAL HI96726C Nickel ISM...