EPC EPC9113 Скачать руководство пользователя страница 5

QUICK START GUIDE

EPC – EFFICIENT POWER CONVERSION CORPORATION   |   

WWW.EPC-CO.COM

   |   COPYRIGHT 2017   |                                                                                                    | 5

Demonstration System EPC9113

NOTE

1. When measuring the high frequency content switch-node (Source Coil Voltage), care 

must be taken to avoid long ground leads. An oscilloscope probe connection (preferred 

method) has been built into the board to simplify the measurement of the Source Coil 

voltage (shown in Figure 4).

2. To maintain control stability, the red LED for voltage mode indicator on the EPC9509 

version 1.0 has been disabled. This will be corrected in subsequent revisions of the 

board. For questions regarding this LED function, please contact EPC.

3. You may experience audible noise emanating from the inductor of the SEPIC converter. 

This is due to a minor instability. This minor instability does not impact the performance 

of the power amplifier or the protection circuitry of the system.

4. AVOID using a Lab Benchtop programmable DC as the load for the category 3 device 

board. These loads have low control bandwidth and will cause the EPC9113 system to 

oscillate at a low frequency and may lead to failure. It is recommended to use a fixed low 

inductance resistor as an initial load. Once a design matures, a post regulator, such as a 

Buck converter, can be used.

THERMAL CONSIDERATIONS

The EPC9113 demonstration system showcases the EPC2108 and 
EPC2036 in a wireless energy transfer application. Although the 
electrical performance surpasses that of traditional silicon devices, 
their relatively smaller size does magnify the thermal management  
requirements. The operator must observe the temperature of the gate 
driver and eGaN FETs to ensure that both are operating within the  
thermal limits as per the datasheets.

NOTE. The EPC9113 demonstration system has limited current and thermal protection 

only when operating off the Pre-Regulator. When bypassing the pre-regulator there is no 

current or thermal protection on board and care must be exercised not to over-current or 

over-temperature the devices. Excessively wide coil coupling and load range variations can 

lead to increased losses in the devices.

Pre-Cautions
The EPC9113 demonstration system has no enhanced protection 
systems and therefore should be operated with caution. Some specific 
precautions are:
1. Never operate the EPC9113 system with a device board that is A4WP 

compliant as this system does not communicate with the device to 
correctly setup the required operating conditions and doing so can 
lead to the failure of the device board. Please contact EPC should 
operating the system with an A4WP compliant device is required to 
obtain instructions on how to do this. Please contact EPC at info@epc-
co.com should the tuning of the coil be required to change to suite 
specific conditions so that it can be correctly adjusted for use with the 
ZVS class-D amplifier.

2. There is no heat-sink on the devices and during experimental 

evaluation it is possible present conditions to the amplifier that may 
cause the devices to overheat. Always check operating conditions and  
monitor the temperature of the EPC devices using an IR camera.

3. Never connect the EPC9509 amplifier board into your VNA in an 

attempt to measure the output impedance of the amplifier. Doing so 
will severely damage the VNA

QUICK START PROCEDURE 

The EPC9113 demonstration system is easy to set up and evaluate the 
performance of the eGaN FET in a wireless power transfer application. Refer 
to Figure 1 to assemble the system and Figures 6 and 8 for proper connection 
and measurement setup before following the testing procedures.
The EPC9509 can be operated using any one of two alternative methods:
a. Using the pre-regulator
b. Bypassing the pre-regulator 
a. Operation using the pre-regulator
The pre-regulator is used to supply power to the amplifier in this mode 
and will limit the coil current, power delivered or maximum supply volt-
age to the amplifier based on the pre-determined settings.
The main 19 V supply must be capable of delivering 2 ADC. DO NOT turn 
up the voltage of this supply when instructed to power up the board, 
instead simply turn on the supply.  The EPC9509 board includes a pre-
regulator to ensure proper operation of the board including start up.
1. Make sure the entire system is fully assembled prior to making electrical 

connections and make sure jumper JP1 is installed. Also make sure the 
source coil and device coil with load are connected.

2. With power off, connect the main input power supply bus to J1 as 

shown in Figure 3. Note the polarity of the supply connector.

3. Make sure all instrumentation is connected to the system.
4. Turn on the main supply voltage to the required value (19 V)
5.  Once operation has been confirmed, observe the output voltage  

and other parameters on both the amplifier and device boards.

6. For shutdown, please follow steps in the reverse order. 
b. Operation bypassing the pre-regulator
In this mode, the pre-regulator is bypassed and the main power is 
connected directly to the amplifier. This allows the amplifier to be 
operated using an external regulator. 

In this mode there is no protection for ensuring the correct operating 
conditions for the eGaN FETs.

1. Make sure the entire system is fully assembled prior to making 

electrical connections and make sure jumper JP1 has been removed 
and installed in JP50 to disable the pre-regulator and to place the 
EPC9509 amplifier in bypass mode. Also make sure the source coil and 
device coil with load are connected.

2. With power off, connect the main input power supply bus +V

IN

 to the  

bottom pin of JP1 and the ground to the ground connection of J1 as  
shown in Figure 3.

3. With power off, connect the control input power supply bus to J1. 

Note the polarity of the supply connector. This is used to power the 
gate drivers and logic circuits.

4.  Make sure all instrumentation is connected to the system.
5.  Turn on the control supply – make sure the supply is 19 V range.
6. Turn on the main supply voltage to the required value (it is 

recommended to start at 0 V and do not exceed the absolute 
maximum voltage of 52 V).

7. Once operation has been confirmed, adjust the main supply 

voltage within the operating range and observe the output voltage,  
efficiency and other parameters on both the amplifier and device boards. 

8. For shutdown, please follow steps in the reverse order. Start by  

reducing the main supply voltage to 0 V followed by steps 6 through 2.

Содержание EPC9113

Страница 1: ...Demonstration System EPC9113 Quick Start Guide 6 78MHz ZVSClass DWirelessPowerSystem usingEPC2108 EPC2036...

Страница 2: ...adjusts the voltage supplied to the ZVS Class D amplifier based on the limits of 3 parameters coil current DC power delivered and maximum voltage the coil current has the lowest priority followed by...

Страница 3: ...8 Hz It can be disabled by placing a jumper into JP70 or can be externally shutdown using an externally controlledopencollector draintransistorontheterminalsofJP70 note which is the ground connection...

Страница 4: ...required predominant operating value such as 24 V but NEVER exceedthe absolute maximum voltage of 52V 6 Whileobservingtheoscilloscopeadjusttheapplicablepotentiometers to so achieve the green waveform...

Страница 5: ...rature of the EPC devices using an IR camera 3 Never connect the EPC9509 amplifier board into your VNA in an attempt to measure the output impedance of the amplifier Doing so will severely damage theV...

Страница 6: ...Figure 2 Block diagram of the EPC9509 wireless power amplifier VAMP Q1_a LZVS12 Q2_a Q1_b Q2_b LZVS2 CZVS2 CZVS1 LZVS1 Coil Connection Single Ended Operation Jumper Pre Regulator Pre Regulator Jumper...

Страница 7: ...Connection Matching Device Output Current 300 m Shunt Output Voltage 5 V LED Output Voltage 37 V LED Load Current SeeNotesfordetails ONLYtobeusedwith Shuntremoved 17 24 VDC VIN Supply Note Polarity S...

Страница 8: ...of the switch nodes using the hole and ground post Figure 10 ZVS timing diagrams Shoot through Q2 turn on Q1 turn off VAMP 0 time ZVS Partial ZVS ZVS Diode Conduction Shoot through Q1 turn on Q2 turn...

Страница 9: ...J106KN T 19 3 C90 C91 C92 1 F 25 V W rth 885012206076 20 2 Czvs1 Czvs2 1 F 50 V W rth 885012207103 21 3 D1_a D1_b D95 40 V 300 mA ST BAT54KFILM 22 10 D2_a D2_b D21 D40 D41 D42 D71 D72 D77 D78 40 V 30...

Страница 10: ...RKF1001X 68 1 R54 0 Yageo RC0402JR 070RL 69 1 R60 40 m 0 4 W Vishay Dale WSLP0603R0400FEB 70 1 R61 150 m 0 25 W Vishay Dale WSL0805R1500FEA18 71 2 R71 R78 124 Panasonic ERJ 2RKF1240X 72 2 R72 R77 22 P...

Страница 11: ...L 3 1 PCB1 Cat3PRU Coastal Circuits Cat3DeviceBoard 4 2 CM1 CM11 470 pF Vishay VJ1111D471KXLAT 5 4 CM2 CM12 CMP1 CMP2 DNP 6 3 CM5 CM7 CMP3 CMP4 DNP 7 1 CM6 56 pF Vishay VJ0505D560JXPAJ 8 1 CMP8 68 pF...

Страница 12: ...robeloop 1 TP 2 V AMP V AMP 5 V G N D L IN OUT H IN a EP C9509_SE_ZVSclass D_Rev1_0 SchDoc 390 nH L zvs1 390 nH L zvs2 DNP L zvs12 1 F 50 V C zvs2 V AMP V AMP 5 V G ND L IN OUT H IN b EPC9509_SE_ZVScl...

Страница 13: ...5113TM OUT GU GL D1 BAT54KFILM 5 V 4 7 V 4 7 V GL 20 1 2 R2 SDM03U40 D3 EMPTY Synchronous Bootstrap Power Supply 1 F 10 V C1 D4 CD0603 Z5V1 Gbtst 27k 1 2 R3 D2 SDM03U40 22 nF 25 V C3 GND 5 V OUT V AMP...

Страница 14: ...0 UCC27611DRV 47k 1 2 R33 D36 D35 Current Mode Power Mode Pmon Imon Vsepic V OUT 634 1 2 R35 5 V 8 2k 1 1 2 R32 51 0k 1 1 2 R31 V OUT V Vsepic Pcmp DC Power Monitor Isns Isns Isns Vfd bk Pmon Output V...

Страница 15: ...D81 40 V 1 A D83 10 F 50 V C85 VRECT 100 nF 50V C84 VRECT VRECT VOUT VOUT 1 2 300 m 1W R80 1 Male Vert 1 2 J81 RX Coil SMD probe loop 1 TP1 SMD probe loop 1 TP2 Kelvin Output Current SMD probe loop 1...

Страница 16: ...rcompliancewiththeEuropeanUniondirectiveonelectromagneticcompatibilityoranyothersuchdirectivesorregulations Asboard builds are at times subject to product availability it is possible that boards may c...

Отзывы: