background image

2.  CR#1: The working mode of the 4 channels in the sensors selected by the temperature measurement module. 

There are 2 modes (J-type and K-type) for each channel which can be set up separately. For example, if the 

user needs to set up CH1: mode 0 (b2 ~ b0 = 100); CH2: mode 1 (b5 ~ b3 = 001); CH3: mode 0 (b8 ~ b6 = 

000) and CH4: mode 1 (b11 ~ b9 = 001), CR#1 has to be set as H0208 and the higher bits (b12 ~ b15) have 

to be reserved. The default value = H’0000. 

3.  CR#2 ~ CR#5: The times to average the temperatures measured at CH1 ~ CH4. Range: K1 ~ K20. Default = 

K10. Please note that when PLC MPU writes in the average time by TO/DTO instruction, please use the 

rising/falling edge contact detection instructions (LDP/LDF…) in case you may not obtain the correct average 

temperature. 

4.  CR#6 ~ CR#9: The average Celsius temperature measured at CH1 ~ CH4 obtained from the average time 

settings in CR#2 ~ CR#5. For example, if the average time is set as 10, the content in CR#6 ~ CR#9 will be 

the average of the most recent 10 temperature signals in Celsius at CH1 ~ CH4. 

5.  CR#10 ~ CR#13: The average Fahrenheit temperature measured at CH1 ~ CH4 obtained from the average 

time settings in CR#2 ~ CR#5. For example, if the average time is set as 10, the content in CR#10 ~ CR#13 

will be the average of the most recent 10 temperature signals in Fahrenheit at CH1 ~ CH4. 

6.  CR #14 ~ CR #17: Displaying the present temperature in Celsius at CH1 ~ CH4 

7.  CR#18, CR#23, CR#28 and CR#29 are reserved. 

8.  CR #19 ~ CR #22: Displaying the present temperature in Fahrenheit at CH1 ~ CH4 

9.  CR #24 ~ CR #27: The adjusted OFFSET value of CH1 ~ CH4. Range: -1,000 ~ +1,000. Unit: 0.1°C. 

Temperature measured by the module – OFFSET value = Actual temperature displayed. 

10.  CR #30: Error status (see the table below) 

 

Error status 

Content 

b15 ~ b8 

b7 

b6 

b5 

b4 

b3 

b2 

b1 

b0 

Abnormal power supply 

K1(H’1) 

0 0 0 0 0 0 0 1 

Scale exceeds the range 
or wiring to empty external 
contact 

K2(H’2) 

0 0 0 0 0 0 1 0 

Incorrect mode setting 

K4(H’4) 

0 0 0 0 0 1 0 0 

OFFSET/GAIN error 

K8(H’8) 

0 0 0 0 1 0 0 0 

Hardware malfunction 

K16(H’10) 

0 0 0 1 0 0 0 0 

Abnormal digital range 

K32(H’20) 

0 0 1 0 0 0 0 0 

Incorrect average times 
setting 

K64(H’40) 

0 1 0 0 0 0 0 0 

Instruction error 

K128(H’80) 

reserved 

1 0 0 0 0 0 0 0 

Note: Each error status is determined by the corresponding bit (b0 ~ b7) and there may be more than 2 errors occurring at the same time. 

0 = normal; 1 = error 

 

11.  CR#31: The setting of RS-485 communication address. Range: 01 ~ 255. Default = K1. 

12.  CR#32: The setting of RS-485 communication speed. b0: 4,800bps; b1: 9,600bps (default); b2: 19,200bps; b3: 

38,400bps; b4: 57,600bps; b5: 115,200bps; b6 ~ b13: reserved; b14: high/low bit exchange of CRC checksum 

(only valid in RTU mode); b15: switching between ASCII mode and RTU mode. 

13.  CR#33: b0 ~ b11: For returning the CR settings to default settings. 

b12 ~ b15: ERR LED definition. Default: b12 ~ b15 = 1111. 

14.  CR#34: Firmware version of the model. 

15.  CR#35 ~ CR#48: Parameters for system use. 

16.  CR#0 ~ CR#34: The corresponding parameter address H’4096 ~ H’40B8 are for users to read/write data by 

RS-485 communication. When using RS-485, the user has to separate the module with MPU first. 

a. 

Communication baud rate: 4,800/9,600/19,200/38,400/57,600/115,200 bps. 

b. 

Modbus ASCII/RTU communication protocol: ASCII data format (7-bit, Even bit, 1 stop bit (7, E, 1)); 

RTU data format (8-bit, Even bit, 1 stop bit (8, E, 1)). 

c.      Function: H’03 (read register data); H’06 (write 1 word datum into register); H’10 (write many word data 

into register). 

d. 

Latched CR should be written by RS-485 communication to stay latched. CR will not be latched if written 

by MPU through TO/DTO instruction. 

 

 

   

Temperature/Digital Curve

 

Temperature measurement modes 

J-type thermocouple 

+7,000(12,920)

-1,000(-1,480)

+700

-100 C

C

F)

(-148

F)

(+1,292

Digital output

Measured 

temperature input

 

K-type thermocouple 

+10,000(18,320)

-1,000(-1,480)

+1,000

-100 C

C

(-1,832  F)

Digital output

Measured 
temperature input

 

 

 

R & S-type thermocouple 

+17,000(30,920)

-100(-140)

+1,700

-10 C

C

F)

(-14

F)

(+3,092

Digital output

Measured

temperature input

 

T-type thermocouple 

+3,500(6,620)

-1,000(-1,480)

+350

-100 C

C

F)

(-148

F)

(+662

Digital output

Measured
temperature input

 

 

   

Trial Operation & Troubleshooting

 

™

 

LED Display

 

1.  When the module is powered for the first time, POWER LED will be on and ERROR LED will be on for 

0.5 second. After this, A/D LED will start to flash. 

2.  When the power supply is normal, POWER LED will be on and ERROR LED should be off. When the 

power supply is less than 19.5V, ERROR LED will keep being on until the power supply goes higher 

than 19.5V. 

3.  When controlled by RS485, RS-485 LED on the module will flash after receiving the RS-485 

instruction. 

4.  When the input or output value exceeds the upper bound or falls below the lower bound after 

conversion, ERROR LED will flash. 

 

™

 

Program Example 

M1000

FROM

K0

= H6403  D0

TO

K0

FROM

K0

FROM

K0

FROM

K0

FROM

K0

END

M1002

K0

K2

K6

K10

K14

K19

D0

D10

D20

D24

D30

D34

K1

K4

K4

K4

K4

K4

 

 Read the model name from K0 and see if it is DVP04TC-H2: H’6403 

 Set the average times in CH1 ~ CH4 as D10 ~ D13. 

 If D0 = H’6403, read the average temperature (°C) measured in CH1 ~ CH4 from CR#6 ~ CR#9 and store the 

4 data in D20 ~ D23. 

 Read the average temperature (°F) measured in CH1 ~ CH4 from CR#10 ~ CR#13 and store the 4 data in 

D24~ D27. 

 Read the average temperature (°C) measured in CH1 ~ CH4 from CR#14 ~ CR#17 and store the 4 data in 

D30~ D33. 

 Read the average temperature (°F) measured in CH1 ~ CH4 from CR#19 ~ CR#22 and store the 4 data in 

D34~ D37. 

 

 

 

Relevant Instructions

 

API 

 

 

 

78 

 

F R O M  

 

 

 

 

Read CR data in special modules 

 

 Instruction
Explanation

 

 

: No. of special module (m1 = 0 ~ 7)     

: CR# in special module to be read 

: Device for storing read data                 

: Number of data to be read at a time 

Program
Example

 

Read CR#24 of special module No. 0 into D0 and CR#25 into D1. Only 2 groups of data are 
read at a time (n = 2). 

X0

FROM

K0

K24

D0

K2

 

 

API 

 

 

 

79 

 

T O  

 

 

 

 

Write CR data into special module 

 

 Instruction
Explanation

 

 

: No. of special module (m1 = 0 ~ 7)       

: CR# in special module to be written 

: Data to be written into CR            

: Number of data to be written at a time 

Program
Example

 

Use 32-bit instruction DTO to write the content in D11 and D10 into CR#7 and CR#6 of special 
module No. 0. Only 1 group of data is written in at a time (n = 1). 

X0

DTO

K0

K6

D10

K1

 

Remarks

 

 Operand rules 

1. 

: The No. of special modules connected to PLC MPU. No. 0 is the module closest to te 

MPU. Maximum 8 modules are allowed to connected to a PLC MPU and they will not occupy 

any I/O points. 

2. 

: CR#. CR (control register) is the 49 16-bit memories built in the special module, 

numbered in decimal as #0 ~ #48. All operation status and settings of the special module are 

contained in the CR. 

3.  FROM/TO instruction is for reading/writing 1 CR at a time. DFROM/DTO instruction is for 

reading/writing 2 CRs at a time. 

CR #10

CR #9

L ower  1 6- bi t

Desig nated CR number

Hi gher 16 -b it

 

4.  Number of groups “n” to be transmitted: n = 2 in 16-bit instructions and n = 1 in 32-bit 

instructions mean the same. 

 

D0
D1
D2
D3
D4
D5

CR #5
CR #6
CR #7
CR #8
CR #9
CR #10

D0
D1
D2
D3
D4
D5

CR #5
CR #6
CR #7
CR #8
CR #9
CR #10

Designated device

Designated CR

Designated device Designated CR

16-bit instruction  when n=6

32-bit instruction when n=3

 

 M1083 for switching instruction modes in EH2 series models 

1.  When M1083 = Off, during the execution of FROM/TO instruction, all external or internal 

interruption subroutines will be forbidden. The interruptions are allowed only after FROM/TO 

instruction finishes its execution. FROM/TO instruction can also be used in an interruption 

subroutine. 

2.  When M1083 = On and an interruption signal occurs during the execution of FROM/TO 

instruction, the interruption will be processed first (with a 100us delay) and the execution of 

FROM/TO will be stopped. After the interruption subroutine finishes its execution, the 

program will jump to the next instructio of FROM/TO. FROM/TO cannot be used in an 

interruption subroutine. 

 

 

The content of this instruction sheet may be revised without prior notice. Please consult our distributors or 

download the most updated version at http://www.delta.com.tw/industrialautomation 

Отзывы: