background image

PRELIMINARY

CY14B108K, CY14B108M

Document #: 001-47378 Rev. **

Page 8 of 29

calibration registers

 

and the OSCEN bit are not affected by the

‘oscillator failed’ condition.

The value of OSCF must be reset to ‘0’ when the time registers
are written for the first time. This initializes the state of this bit
which may have become set when the system was first powered
on.

To reset OSCF, set the write bit “W” (in the Flags register at
0xFFFF0) to a “1” to enable writes to the Flag register. Write a
“0” to the OSCF bit and then reset the write bit to “0” to disable
writes.

Calibrating the Clock

The RTC is driven by a quartz controlled crystal with a nominal
frequency of 32.768 kHz. Clock accuracy depends on the quality
of the crystal and calibration. The crystals available in market
typically have an error of +20 ppm to +35 ppm. However,
CY14B108K employs a calibration circuit that improves the
accuracy to +1/–2 ppm at 25°C. This implies an error of +2.5
seconds to -5 seconds per month.

The

 

calibration circuit adds or subtracts counts from the oscillator

divider circuit to achieve this accuracy. The number of pulses that
are suppressed (subtracted, negative calibration) or split (added,
positive calibration) depends upon the value loaded into the five
calibration bits found in Calibration register at 0xFFFF8. The
calibration bits occupy the five lower order bits in the Calibration
register. These bits are set to represent any value between ‘0’
and 31 in binary form. Bit D5 is a sign bit, where a ‘1’ indicates
positive calibration and a ‘0’ indicates negative calibration.
Adding counts speeds the clock up and subtracting counts slows
the clock down. If a binary ‘1’ is loaded into the register, it corre-
sponds to an adjustment of 4.068 or –2.034 ppm offset in oscil-
lator error, depending on the sign.

Calibration occurs within a 64-minute cycle. The first 62 minutes
in the cycle may, once every minute, have one second shortened
by 128 or lengthened by 256 oscillator cycles. If a binary ‘1’ is
loaded into the register, only the first two minutes of the
64-minute cycle are modified. If a binary 6 is loaded, the first 12
are affected, and so on. Therefore, each calibration step has the
effect of adding 512 or subtracting 256 oscillator cycles for every
125,829,120 actual oscillator cycles, that is, 4.068 or –2.034 ppm
of adjustment per calibration step in the Calibration register.

To determine the required calibration, the CAL bit in the Flags
register (0xFFFF0) must be set to ‘1’. This causes the INT pin to
toggle at a nominal frequency of 512 Hz. Any deviation
measured from the 512 Hz indicates the degree and direction of
the required correction. For example, a reading of 512.01024 Hz
indicates a +20 ppm error. Hence, a decimal value of –10
(001010b) must be loaded into the Calibration register to offset
this error. 

Note

 Setting or changing the Calibration register does not affect

the test output frequency.

To set or clear CAL, set the write bit “W” (in the flags register at
0xFFFF0) to “1” to enable writes to the Flag register. Write a
value to CAL, and then reset the write bit to “0” to disable writes.

Alarm

The alarm function compares user programmed values of alarm
time and date (stored in the registers 0xFFFF1-5) with the corre-
sponding time of day and date values. When a match occurs, the

alarm internal flag (AF) is set and an interrupt is generated on
INT pin if Alarm Interrupt Enable (AIE) bit is set. 

There are four alarm match fields - date, hours, minutes, and
seconds. Each of these fields has a match bit that is used to
determine if the field is used in the alarm match logic. Setting the
match bit to ‘0’ indicates that the corresponding field is used in
the match process. Depending on the match bits, the alarm
occurs as specifically as once a month or as frequently as once
every minute. Selecting none of the match bits (all 1s) indicates
that no match is required and therefore, alarm is disabled.
Selecting all match bits (all 0s) causes an exact time and date
match. 

There are two ways to detect an alarm event: by reading the AF
flag or monitoring the INT pin. The AF flag in the flags register at
0xFFFF0 indicates that a date or time match has occurred. The
AF bit is set to “1” when a match occurs. Reading the flags
register clears the alarm flag bit (and all others). A hardware
interrupt pin may also be used to detect an alarm event. 

To set, clear or enable an alarm, set the ‘W’ bit (in Flags Register
- 0xFFFF0) to ‘1’ to enable writes to Alarm Registers. After
writing the alarm

 

value, clear the ‘W’ bit back to “0” for the

changes to take effect.

Note 

CY14B108K requires the alarm match bit for seconds

(0xFFFF2 - D7) to be set to ‘0’ for proper operation of Alarm Flag
and Interrupt.

Watchdog Timer

The Watchdog Timer is a free running down counter that uses
the 32 Hz clock (31.25 ms) derived from the crystal oscillator.
The oscillator must be running for the watchdog to function. It
begins counting down from the value loaded in the Watchdog
Timer register.

The timer consists of a loadable register and a free running
counter. On power up, the watchdog time out value in register
0xFFFF7 is loaded into the Counter Load register. Counting
begins on power up and restarts from the loadable value any time
the Watchdog Strobe (WDS) bit is set to ‘1’. The counter is
compared to the terminal value of ‘0’. If the counter reaches this
value, it causes an internal flag and an optional interrupt output.
You can prevent the time out interrupt by setting WDS bit to ‘1’
prior to the counter reaching ‘0’. This causes the counter to
reload with the watchdog time out value and to be restarted. As
long as the user sets the WDS bit prior to the counter reaching
the terminal value, the interrupt and WDT flag never occur. 

New time out values are written by setting the watchdog write bit
to ‘0’. When the WDW is ‘0’, new writes to the watchdog time out
value bits D5-D0 are enabled to modify the time out value. When
WDW is ‘1’, writes to bits D5-D0 are ignored. The WDW function
enables a user to set the WDS bit without concern that the
watchdog timer value is modified. A logical diagram of the
watchdog timer is shown in 

Figure 3

. Note that setting the

watchdog time out value to ‘0’ disables the watchdog function.

The output of the watchdog timer is the flag bit WDF that is set if
the watchdog is allowed to time out. If the Watchdog Interrupt
Enable (WIE) bit in the Interrupt register is set, a hardware
interrupt on INT pin is also generated on watchdog timeout.

 

The

flag and the hardware interrupt are both cleared when user reads
the Flags registers.

[+] Feedback 

Содержание CY14B108K

Страница 1: ...le static RAM with a full featured RTC in a monolithic integrated circuit The embedded nonvolatile elements incor porate QuantumTrap technology producing the world s most reliable nonvolatile memory The SRAM is read and written infinite number of times while independent nonvolatile data resides in the nonvolatile elements The RTC function provides an accurate clock with leap year tracking and a pr...

Страница 2: ...o tri state BHE Input Byte High Enable Active LOW Controls DQ15 DQ8 BLE Input Byte Low Enable Active LOW Controls DQ7 DQ0 Xout Output Crystal Connection Drives crystal on start up Xin Input Crystal Connection For 32 768 KHz crystal VRTCcap Power Supply Capacitor Supplied Backup RTC Supply Voltage Left unconnected if VRTCbat is used VRTCbat Power Supply Battery Supplied Backup RTC Supply Voltage Le...

Страница 3: ...bit words Keep OE HIGH during the entire write cycle to avoid data bus contention on common I O lines If OE is left LOW internal circuitry turns off the output buffers tHZWE after WE goes LOW AutoStore Operation The CY14B108K CY14B108M stores data to the nvSRAM using one of three storage operations These three operations are Hardware STORE activated by the HSB Software STORE activated by an addres...

Страница 4: ...n is driven LOW by the HSB driver and all reads and writes to nvSRAM are inhibited Software STORE Data is transferred from the SRAM to the nonvolatile memory by a software address sequence The CY14B108K CY14B108M Software STORE cycle is initiated by executing sequential CE or OE controlled read cycles from six specific address locations in exact order During the STORE cycle an erase of the previou...

Страница 5: ...hrough subsequent power down cycles The part comes from the factory with AutoStore enabled Table 2 Mode Selection CE WE OE BHE BLE 3 A15 A0 5 Mode I O Power H X X X Not Selected Output High Z Standby L H L X Read SRAM Output Data Active L L X X Write SRAM Input Data Active L H L 0x4E38 0xB1C7 0x83E0 0x7C1F 0x703F 0x8B45 Read SRAM Read SRAM Read SRAM Read SRAM Read SRAM AutoStore Disable Output Dat...

Страница 6: ...ating patterns of AA 55 00 FF A5 or 5A End product s firmware should not assume an NV array is in a set programmed state Routines that check memory content values to determine first time system configuration cold or warm boot status and so on should always program a unique NV pattern that is complex 4 byte pattern of 46 E6 49 53 hex or more random bytes as part of the final system manufac turing t...

Страница 7: ...r to 0x0 after which RTC resumes normal operation Note The values entered in the timekeeping alarm calibration and interrupt registers need a STORE operation to be saved in nonvolatile memory Therefore while working in AutoStore disabled mode the user must perform a STORE operation after writing into the RTC registers for the RTC to work correctly Backup Power The RTC in the CY14B108K is intended ...

Страница 8: ...ate stored in the registers 0xFFFF1 5 with the corre sponding time of day and date values When a match occurs the alarm internal flag AF is set and an interrupt is generated on INT pin if Alarm Interrupt Enable AIE bit is set There are four alarm match fields date hours minutes and seconds Each of these fields has a match bit that is used to determine if the field is used in the alarm match logic ...

Страница 9: ... are only generated while working on normal power and are not triggered when system is running in backup power mode Note CY14B108K generates valid interrupts only after the Powerup Recall sequence is completed All events on INT pin must be ignored for tHRECALL duration after powerup Interrupt Register Watchdog Interrupt Enable WIE When set to 1 the watchdog timer drives the INT pin and an internal...

Страница 10: ... pF C1 21 pF C2 21 pF Note The recommended values for C1 and C2 include board trace capacitance Xout Xin Y1 C2 C1 Watchdog Timer Power Monitor Clock Alarm VINT WDF WIE PF PFE AF AIE P L Pin Driver H L INT VCC VSS WDF Watchdog Timer Flag WIE Watchdog Interrupt PF Power Fail Flag PFE Power Fail Enable AF Alarm Flag AIE Alarm Interrupt Enable P L Pulse Level H L High Low Enable Feedback ...

Страница 11: ...xFFFF8 0x7FFF8 OSCEN 0 0 Cal Sign 0 Calibration 00000 Calibration Values 9 0xFFFF7 0x7FFF7 WDS 0 WDW 0 WDT 000000 Watchdog 9 0xFFFF6 0x7FFF6 WIE 0 AIE 0 PFE 0 0 H L 1 P L 0 0 0 Interrupts 9 0xFFFF5 0x7FFF5 M 1 0 10s Alarm Date Alarm Day Alarm Day of Month 01 31 0xFFFF4 0x7FFF4 M 1 0 10s Alarm Hours Alarm Hours Alarm Hours 00 23 0xFFFF3 0x7FFF3 M 1 10 Alarm Minutes Alarm Minutes Alarm Minutes 00 59...

Страница 12: ...tomatically adjusted for 0xFFFFC 0x7FFFC Time Keeping Day D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 Day of Week Lower nibble three bits contains a value that correlates to day of the week Day of the week is a ring counter that counts from 1 to 7 then returns to 1 The user must assign meaning to the day value because the day is not integrated with the date 0xFFFFB 0x7FFFB Time Keeping Hours D7 D6 D5 D4 D3 ...

Страница 13: ...tiplier of the 32 Hz count 31 25 ms The range of timeout value is 31 25 ms a setting of 1 to 2 seconds setting of 3 Fh Setting the watchdog timer register to 0 disables the timer These bits can be written only if the WDW bit was set to 0 on a previous cycle 0xFFFF6 0x7FFF6 Interrupt Status Control D7 D6 D5 D4 D3 D2 D1 D0 WIE AIE PFE 0 H L P L 0 0 WIE Watchdog Interrupt Enable When set to 1 and a w...

Страница 14: ...atchdog timer is allowed to reach 0 without being reset by the user It is cleared to 0 when the Flags register is read or on power up AF Alarm Flag This read only bit is set to 1 when the time and date match the values stored in the alarm registers with the match bits 0 It is cleared when the Flags register is read or on power up PF Power Fail Flag This read only bit is set to 1 when power falls b...

Страница 15: ...rial 75 75 57 mA mA ICC2 Average VCC Current during STORE All Inputs Don t Care VCC Max Average current for duration tSTORE 20 mA ICC3 10 Average VCC Current at tRC 200 ns 3V 25 C typical All Inputs Cycling at CMOS Levels Values obtained without output loads IOUT 0 mA 40 mA ICC4 Average VCAP Current during AutoStore Cycle All Inputs Don t Care VCC Max Average current for duration tSTORE 10 mA ISB ...

Страница 16: ...t CIN Input Capacitance TA 25 C f 1 MHz VCC 0 to 3 0V 14 pF COUT Output Capacitance 14 pF Thermal Resistance In the following table the thermal resistance parameters are listed 13 Parameter Description Test Conditions 44 TSOP II 54 TSOP II Unit ΘJA Thermal Resistance Junction to Ambient Test conditionsfollow standard test methods and procedures for measuring thermal impedance in accordance with EI...

Страница 17: ...cription Test Conditions Min Typ Max Units IBAK 14 RTC Backup Current Room Temperature 25o C 300 nA Hot Temperature 85o C 450 nA VRTCbat RTC Battery Pin Voltage 1 8 3 0 3 3 V VRTCcap RTC Capacitor Pin Voltage 1 5 3 0 3 6 V tOCS RTC Oscillator Time to Start 1 2 sec Note 14 From either VRTCcap or VRTCbat Feedback ...

Страница 18: ... 0 ns tHZBE 13 Byte Disable to Output Inactive 8 10 15 ns SRAM Write Cycle tWC tWC Write Cycle Time 20 25 45 ns tPWE tWP Write Pulse Width 15 20 30 ns tSCE tCW Chip Enable To End of Write 15 20 30 ns tSD tDW Data Setup to End of Write 8 10 15 ns tHD tDH Data Hold After End of Write 0 0 0 ns tAW tAW Address Setup to End of Write 15 20 30 ns tSA tAS Address Setup to Start of Write 0 0 0 ns tHA tWR A...

Страница 19: ...20 Address Valid Address Data Output Output Data Valid Standby Active High Impedance CE OE BHE BLE ICC tHZCE tRC tACE tAA tLZCE tDOE tLZOE tDBE tLZBE tPU tPD tHZBE tHZOE Data Output Data Input Input Data Valid High Impedance Address Valid Address Previous Data tWC tSCE tHA tBW tAW tPWE tSA tSD tHD tHZWE tLZWE WE BHE BLE CE Note 20 CE or WE must be VIH during address transitions Feedback ...

Страница 20: ...t Input Data Valid High Impedance Address Valid Address tWC tSD tHD BHE BLE WE CE tSA tSCE tHA tBW tPWE Data Output Data Input Input Data Valid High Impedance Address Valid Address tWC tSD tHD BHE BLE WE CE tSCE tSA tBW tHA tAW tPWE Not applicable for RTC register writes Note 21 Only CE and WE controlled writes to RTC registers are allowed BLE pin must be held LOW before CE or WE pin goes LOW for ...

Страница 21: ... RECALL 25 VSWITCH VHDIS VVCCRISE tSTORE tSTORE tHHHD tHHHD tDELAY tDELAY tLZHSB tLZHSB tHRECALL tHRECALL HSB OUT Autostore POWER UP RECALL Read Write Inhibited RWI POWER UP RECALL Read Write BROWN OUT Autostore POWER UP RECALL Read Write POWER DOWN Autostore Note23 Note23 Note26 Notes 22 tHRECALL starts from the time VCC rises above VSWITCH 23 If an SRAM write has not taken place since the last n...

Страница 22: ...Figure 14 AutoStore Enable and Disable Cycle tRC tRC tSA tCW tCW tSA tHA tLZCE tHZCE tHA tHA tHA tDELAY tSTORE tRECALL tHHHD tLZHSB High Impedance Address 1 Address 6 Address CE OE HSB STORE only DQ DATA RWI tRC tRC tSA tCW tCW tSA tHA tLZCE tHZCE tHA tHA tHA tDELAY Address 1 Address 6 Address CE OE DQ DATA tSS Notes 27 The software sequence is clocked with CE controlled or OE controlled reads 28 ...

Страница 23: ...tch set Write latch not set HSB IN HSB OUT DQ Data Out RWI HSB IN HSB OUT RWI HSB pin is driven high to VCC only by Internal SRAM is disabled as long as HSB IN is driven low HSB driver is disabled tDHSB 100kOhm resistor Address 1 Address 6 Address 1 Address 6 Soft Sequence Command tSS tSS CE Address VCC tSA tCW Soft Sequence Command tCW Notes 31 This is the amount of time it takes to take action o...

Страница 24: ...E WE OE BHE 3 BLE 3 Inputs and Outputs 2 Mode Power H X X X X High Z Deselect Power Down Standby L X X H H High Z Output Disabled Active L H L L L Data Out DQ0 DQ15 Read Active L H L H L Data Out DQ0 DQ7 DQ8 DQ15 in High Z Read Active L H L L H Data Out DQ8 DQ15 DQ0 DQ7 in High Z Read Active L H H L L High Z Output Disabled Active L H H H L High Z Output Disabled Active L H H L H High Z Output Dis...

Страница 25: ...e Reel Blank Std Speed 20 20 ns 25 25 ns Data Bus K x8 RTC M x16 RTC Density 108 8 Mb Voltage B 3 0V Cypress CY14 B 108 K ZS P 20 X C T NVSRAM 14 AutoStore Software STORE Hardware STORE Temperature C Commercial 0 to 70 C I Industrial 40 to 85 C Pb Free Package ZS TSOP II P 54 Pin Blank 44 Pin 45 45 ns Feedback ...

Страница 26: ... TSOPII CY14B108K ZS25XIT 51 85087 44 pin TSOPII Industrial CY14B108K ZS25XI 51 85187 44 pin TSOPII CY14B108M ZSP25XCT 51 85160 54 pin TSOPII Commercial CY14B108M ZSP25XC 51 85160 54 pin TSOPII CY14B108M ZSP25XIT 51 85160 54 pin TSOPII Industrial CY14B108M ZSP25XI 51 85160 54 pin TSOPII 45 CY14B108K ZS45XCT 51 85087 44 pin TSOPII Commercial CY14B108K ZS45XC 51 85087 44 pin TSOPII CY14B108K ZS45XIT...

Страница 27: ... PLANE SEATING PIN 1 I D 44 1 18 517 0 729 0 800 BSC 0 5 0 400 0 016 0 300 0 012 EJECTOR PIN R G O K E A X S 11 735 0 462 10 058 0 396 10 262 0 404 1 194 0 047 0 991 0 039 0 150 0 0059 0 050 0 0020 0 0315 18 313 0 721 10 058 0 396 10 262 0 404 0 597 0 0235 0 406 0 0160 0 210 0 0083 0 120 0 0047 BASE PLANE 0 10 004 22 23 TOP VIEW BOTTOM VIEW 51 85087 A Feedback ...

Страница 28: ...PRELIMINARY CY14B108K CY14B108M Document 001 47378 Rev Page 28 of 29 Figure 18 54 Pin TSOP II 51 85160 Package Diagrams continued 51 85160 Feedback ...

Страница 29: ...in the applicable agreement Any reproduction modification translation compilation or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress Disclaimer CYPRESS MAKES NO WARRANTY OF ANY KIND EXPRESS OR IMPLIED WITH REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PART...

Отзывы: