Cypress 001-07160 Скачать руководство пользователя страница 10

CY7C1318CV18
CY7C1320CV18

Document Number: 001-07160 Rev. *F

Page 10 of 26

IEEE 1149.1 Serial Boundary Scan (JTAG)

These SRAMs incorporate a serial boundary scan Test Access

Port (TAP) in the FBGA package. This part is fully compliant with

IEEE Standard #1149.1-2001. The TAP operates using JEDEC

standard 1.8V I/O logic levels.

Disabling the JTAG Feature

It is possible to operate the SRAM without using the JTAG

feature. To disable the TAP controller, TCK must be tied LOW

(V

SS

) to prevent clocking of the device. TDI and TMS are inter-

nally pulled up and may be unconnected. They may alternatively

be connected to V

DD

 through a pull up resistor. TDO must be left

unconnected. Upon power up, the device comes up in a reset

state, which does not interfere with the operation of the device.

Test Access Port—Test Clock

The test clock is used only with the TAP controller. All inputs are

captured on the rising edge of TCK. All outputs are driven from

the falling edge of TCK.

Test Mode Select (TMS)

The TMS input is used to give commands to the TAP controller

and is sampled on the rising edge of TCK. This pin may be left

unconnected if the TAP is not used. The pin is pulled up inter-

nally, resulting in a logic HIGH level.

Test Data-In (TDI)

The TDI pin is used to serially input information into the registers

and can be connected to the input of any of the registers. The

register between TDI and TDO is chosen by the instruction that

is loaded into the TAP instruction register. For information on

loading the instruction register, see the 

TAP Controller State

Diagram

 on page 12. TDI is internally pulled up and can be

unconnected if the TAP is unused in an application. TDI is

connected to the most significant bit (MSB) on any register.

Test Data-Out (TDO)

The TDO output pin is used to serially clock data out from the

registers. The output is active, depending upon the current state

of the TAP state machine (see 

Instruction Codes

 on page 15).

The output changes on the falling edge of TCK. TDO is

connected to the least significant bit (LSB) of any register.

Performing a TAP Reset

A Reset is performed by forcing TMS HIGH (V

DD

) for five rising

edges of TCK. This Reset does not affect the operation of the

SRAM and can be performed while the SRAM is operating. At

power up, the TAP is reset internally to ensure that TDO comes

up in a high-Z state.

TAP Registers

Registers are connected between the TDI and TDO pins to scan

the data in and out of the SRAM test circuitry. Only one register

can be selected at a time through the instruction registers. Data

is serially loaded into the TDI pin on the rising edge of TCK. Data

is output on the TDO pin on the falling edge of TCK.

Instruction Register

Three-bit instructions can be serially loaded into the instruction

register. This register is loaded when it is placed between the TDI

and TDO pins, as shown in 

TAP Controller Block Diagram

 on

page 13. Upon power up, the instruction register is loaded with

the IDCODE instruction. It is also loaded with the IDCODE

instruction if the controller is placed in a reset state, as described

in the previous section.
When the TAP controller is in the Capture-IR state, the two least

significant bits are loaded with a binary “01” pattern to allow for

fault isolation of the board level serial test path.

Bypass Register

To save time when serially shifting data through registers, it is

sometimes advantageous to skip certain chips. The bypass

register is a single-bit register that can be placed between TDI

and TDO pins. This enables shifting of data through the SRAM

with minimal delay. The bypass register is set LOW (V

SS

) when

the BYPASS instruction is executed.

Boundary Scan Register

The boundary scan register is connected to all of the input and

output pins on the SRAM. Several No Connect (NC) pins are also

included in the scan register to reserve pins for higher density

devices.
The boundary scan register is loaded with the contents of the

RAM input and output ring when the TAP controller is in the

Capture-DR state and is then placed between the TDI and TDO

pins when the controller is moved to the Shift-DR state. The

EXTEST, SAMPLE/PRELOAD, and SAMPLE Z instructions can

be used to capture the contents of the input and output ring.
The 

Boundary Scan Order

 on page 16 shows the order in which

the bits are connected. Each bit corresponds to one of the bumps

on the SRAM package. The MSB of the register is connected to

TDI, and the LSB is connected to TDO.

Identification (ID) Register

The ID register is loaded with a vendor-specific, 32-bit code

during the Capture-DR state when the IDCODE command is

loaded in the instruction register. The IDCODE is hardwired into

the SRAM and can be shifted out when the TAP controller is in

the Shift-DR state. The ID register has a vendor code and other

information described in 

Identification Register Definitions

 on

page 15.

TAP Instruction Set

Eight different instructions are possible with the three-bit

instruction register. All combinations are listed in 

Instruction

Codes

 on page 15. Three of these instructions are listed as

RESERVED and must not be used. The other five instructions

are described in detail below.
Instructions are loaded into the TAP controller during the Shift-IR

state when the instruction register is placed between TDI and

TDO. During this state, instructions are shifted through the

instruction register through the TDI and TDO pins. To execute

the instruction once it is shifted in, the TAP controller must be

moved into the Update-IR state.

[+] Feedback 

Содержание 001-07160

Страница 1: ...R II archi tecture The DDR II consists of an SRAM core with advanced synchronous peripheral circuitry and a one bit burst counter Addresses for read and write are latched on alternate rising edges of the input K clock Write data is registered on the rising edges of both K and K Read data is driven on the rising edges of C and C if provided or on the rising edge of K and K if C C are not provided F...

Страница 2: ...gic Reg Reg Reg 18 36 18 BWS 1 0 VREF Write Add Decode 18 20 C C 18 LD Control Burst Logic A0 A 19 1 R W DOFF 512K x 18 Array 512K x 18 Array 19 18 DQ 17 0 18 CQ CQ Write Reg Write Reg CLK A 18 0 Gen K K Control Logic Address Register Read Add Decode Read Data Reg R W Output Logic Reg Reg Reg 36 72 36 BWS 3 0 VREF Write Add Decode 36 19 C C 36 LD Control Burst Logic A0 A 18 1 R W DOFF 256K x 36 Ar...

Страница 3: ... VSS VSS NC DQ1 NC N NC NC DQ16 VSS A A A VSS NC NC NC P NC NC DQ17 A A C A A NC NC DQ0 R TDO TCK A A A C A A A TMS TDI CY7C1320CV18 512K x 36 1 2 3 4 5 6 7 8 9 10 11 A CQ NC 144M NC 36M R W BWS2 K BWS1 LD A NC 72M CQ B NC DQ27 DQ18 A BWS3 K BWS0 A NC NC DQ8 C NC NC DQ28 VSS A A0 A VSS NC DQ17 DQ7 D NC DQ29 DQ19 VSS VSS VSS VSS VSS NC NC DQ16 E NC NC DQ20 VDDQ VSS VSS VSS VDDQ NC DQ15 DQ6 F NC DQ3...

Страница 4: ...d when the appropriate port is deselected R W Input Synchronous Synchronous Read Write Input When LD is LOW this input designates the access type read when R W is HIGH write when R W is LOW for the loaded address R W must meet the setup and hold times around the edge of K C Input Clock Positive Input Clock for Output Data C is used in conjunction with C to clock out the read data from the device C...

Страница 5: ...G TDI Input TDI Pin for JTAG TMS Input TMS Pin for JTAG NC N A Not Connected to the Die Can be tied to any voltage level NC 36M N A Not Connected to the Die Can be tied to any voltage level NC 72M N A Not Connected to the Die Can be tied to any voltage level NC 144M N A Not Connected to the Die Can be tied to any voltage level NC 288M N A Not Connected to the Die Can be tied to any voltage level V...

Страница 6: ... fashion On the following K clock rise the data presented to D 17 0 is latched and stored into the 18 bit write data register provided BWS 1 0 are both asserted active On the subsequent rising edge of the negative input clock K the infor mation presented to D 17 0 is also stored into the write data register provided BWS 1 0 are both asserted active The 36 bits of data are then written into the mem...

Страница 7: ...r the echo clocks is shown in Switching Characteristics on page 20 DLL These chips use a Delay Lock Loop DLL that is designed to function between 120 MHz and the specified maximum clock frequency During power up when the DOFF is tied HIGH the DLL is locked after 1024 cycles of stable clock The DLL can also be reset by slowing or stopping the input clocks K and K for a minimum of 30 ns However it i...

Страница 8: ...During the data portion of a write sequence Only the upper byte D 17 9 is written into the device D 8 0 remains unaltered H L L H During the data portion of a write sequence Only the upper byte D 17 9 is written into the device D 8 0 remains unaltered H H L H No data is written into the devices during this portion of a write operation H H L H No data is written into the devices during this portion...

Страница 9: ...te D 17 9 is written into the device D 8 0 and D 35 18 remains unaltered H L H H L H During the data portion of a write sequence only the byte D 17 9 is written into the device D 8 0 and D 35 18 remains unaltered H H L H L H During the data portion of a write sequence only the byte D 26 18 is written into the device D 17 0 and D 35 27 remains unaltered H H L H L H During the data portion of a writ...

Страница 10: ...dge of TCK Instruction Register Three bit instructions can be serially loaded into the instruction register This register is loaded when it is placed between the TDI and TDO pins as shown in TAP Controller Block Diagram on page 13 Upon power up the instruction register is loaded with the IDCODE instruction It is also loaded with the IDCODE instruction if the controller is placed in a reset state a...

Страница 11: ...egister Once the data is captured it is possible to shift out the data by putting the TAP into the Shift DR state This places the boundary scan register between the TDI and TDO pins PRELOAD places an initial data pattern at the latched parallel outputs of the boundary scan register cells before the selection of another boundary scan test operation The shifting of data for the SAMPLE and PRELOAD ph...

Страница 12: ...llows 9 TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 SELECT IR SCAN CAPTURE IR SHIFT IR EXIT1 IR PAUSE IR EXIT2 IR UPDATE IR Note 9 The 0 1 next to each state represents the value at TMS at the rising edge of TCK Feedback ...

Страница 13: ...ge 0 65VDD VDD 0 3 V VIL Input LOW Voltage 0 3 0 35VDD V IX Input and Output Load Current GND VI VDD 5 5 μA 0 0 1 2 29 30 31 Boundary Scan Register Identification Register 0 1 2 106 0 1 2 Instruction Register Bypass Register Selection Circuitry Selection Circuitry TAP Controller TDI TDO TCK TMS Notes 10 These characteristics pertain to the TAP inputs TMS TCK TDI and TDO Parallel load levels are sp...

Страница 14: ...ld after Clock Rise 5 ns tCH Capture Hold after Clock Rise 5 ns Output Times tTDOV TCK Clock LOW to TDO Valid 10 ns tTDOX TCK Clock LOW to TDO Invalid 0 ns TAP Timing and Test Conditions Figure 2 shows the TAP timing and test conditions 14 Figure 2 TAP Timing and Test Conditions tTL tTH a TDO CL 20 pF Z0 50Ω GND 0 9V 50Ω 1 8V 0V ALL INPUT PULSES 0 9V Test Clock Test Mode Select TCK TMS Test Data I...

Страница 15: ...tures the input and output ring contents IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and TDO This operation does not affect SRAM operation SAMPLE Z 010 Captures the input and output contents Places the boundary scan register between TDI and TDO Forces all SRAM output drivers to a High Z state RESERVED 011 Do Not Use This instruction is reserved for ...

Страница 16: ...P 35 10E 63 1H 91 1M 8 9R 36 10D 64 1A 92 1L 9 11P 37 9E 65 2B 93 3N 10 10P 38 10C 66 3B 94 3M 11 10N 39 11D 67 1C 95 1N 12 9P 40 9C 68 1B 96 2M 13 10M 41 9D 69 3D 97 3P 14 11N 42 11B 70 3C 98 2N 15 9M 43 11C 71 1D 99 2P 16 9N 44 9B 72 2C 100 1P 17 11L 45 10B 73 3E 101 3R 18 11M 46 11A 74 2D 102 4R 19 9L 47 Internal 75 2E 103 4P 20 10L 48 9A 76 1E 104 5P 21 11K 49 8B 77 2F 105 5N 22 10K 50 7C 78 3...

Страница 17: ... 1024 cycles to lock the DLL DLL Constraints DLL uses K clock as its synchronizing input The input must have low phase jitter which is specified as tKC Var The DLL functions at frequencies down to 120 MHz If the input clock is unstable and the DLL is enabled then the DLL may lock onto an incorrect frequency causing unstable SRAM behavior To avoid this provide1024 cycles stable clock to relock to t...

Страница 18: ...rial Failure Rates Electrical Characteristics DC Electrical Characteristics Over the Operating Range 12 Parameter Description Test Conditions Min Typ Max Unit VDD Power Supply Voltage 1 7 1 8 1 9 V VDDQ I O Supply Voltage 1 4 1 5 VDD V VOH Output HIGH Voltage Note 16 VDDQ 2 0 12 VDDQ 2 0 12 V VOL Output LOW Voltage Note 17 VDDQ 2 0 12 VDDQ 2 0 12 V VOH LOW Output HIGH Voltage IOH 0 1 mA Nominal Im...

Страница 19: ... affect these parameters Parameter Description Test Conditions 165 FBGA Package Unit ΘJA Thermal Resistance Junction to Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance in accordance with EIA JESD51 18 7 C W ΘJC Thermal Resistance Junction to Case 4 5 C W Figure 4 AC Test Loads and Waveforms Electrical Characteristics continued DC Electrical Chara...

Страница 20: ...6 0 7 ns tSC tIVKH Control Setup to K Clock Rise LD R W 0 3 0 5 0 6 0 7 ns tSCDDR tIVKH Double Data Rate Control Setup to Clock K K Rise BWS0 BWS1 BWS2 BWS3 0 3 0 35 0 4 0 5 ns tSD tDVKH D X 0 Setup to Clock K and K Rise 0 3 0 35 0 4 0 5 ns Hold Times tHA tKHAX Address Hold after K Clock Rise 0 3 0 5 0 6 0 7 ns tHC tKHIX Control Hold after K Clock Rise LD R W 0 3 0 5 0 6 0 7 ns tHCDDR tKHIX Double...

Страница 21: ...5 0 45 0 45 0 50 ns tCLZ tCHQX1 Clock C C Rise to Low Z 24 25 0 45 0 45 0 45 0 50 ns DLL Timing tKC Var tKC Var Clock Phase Jitter 0 20 0 20 0 20 0 20 ns tKC lock tKC lock DLL Lock Time K C 1024 1024 1024 1024 Cycles tKC Reset tKC Reset K Static to DLL Reset 30 30 30 30 ns Switching Characteristics continued Over the Operating Range 20 21 Cypress Parameter Consortium Parameter Description 267 MHz ...

Страница 22: ...C A0 D20 D21 D30 D31 Q00 Q11 Q01 Q10 A1 A2 A3 A4 Q41 tCCQO tCQOH tCCQO tCQOH tKL tCYC K K LD R W A DQ C C CQ CQ SA tKH tKHKH tCQD tCQDOH tCQH tCQHCQH Notes 26 Q00 refers to output from address A0 Q01 refers to output from the next internal burst address following A0 that is A0 1 27 Outputs are disabled High Z one clock cycle after a NOP 28 In this example if address A4 A3 then data Q40 D30 and Q41...

Страница 23: ... MHz Ordering Code Package Diagram Package Type Operating Range 267 CY7C1318CV18 267BZXC 51 85180 165 Ball Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm Pb Free Commercial CY7C1320CV18 267BZXC 250 CY7C1318CV18 250BZC 51 85180 165 Ball Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm Commercial CY7C1320CV18 250BZC CY7C1318CV18 250BZXC 51 85180 165 Ball Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm Pb Free C...

Страница 24: ... A B Ø0 08 M C B A 0 15 4X 0 35 0 06 SEATING PLANE 0 53 0 05 0 25 C 0 15 C PIN 1 CORNER TOP VIEW BOTTOM VIEW 2 3 4 5 6 7 8 9 10 10 00 14 00 B C D E F G H J K L M N 11 11 10 9 8 6 7 5 4 3 2 1 P R P R K M N L J H G F E D C B A A 15 00 0 10 13 00 0 10 B C 1 00 5 00 0 36 0 06 0 14 1 40 MAX SOLDER PAD TYPE NON SOLDER MASK DEFINED NSMD NOTES PACKAGE WEIGHT 0 475g JEDEC REFERENCE MO 216 ISSUE E PACKAGE C...

Страница 25: ... final Updated Logic Block diagram Removed 300 MHz and 278 MHz speed bins Added 267 MHz speed bin Updated IDD ISB specs Changed DLL minimum operating frequency from 80MHz to 120MHz Changed tCYC max spec to 8 4ns Modified footnotes 20 and 28 D 2507747 See ECN VKN PYRS Changed Ambient Temperature with Power Applied from 10 C to 85 C to 55 C to 125 C in the Maximum Ratings on page 20 Updated power up...

Страница 26: ...fy create derivative works of and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement Any reproduction modification translation compilation or representation of this Source Code except as specified...

Отзывы: