Cypress Semiconductor STK14C88-3 Скачать руководство пользователя страница 4

STK14C88-3

Document Number: 001-50592 Rev. **

Page 4 of 17

Hardware STORE (HSB) Operation

The STK14C88-3 provides the HSB pin for controlling and
acknowledging the STORE operations. The HSB pin is used
to request a hardware STORE cycle. When the HSB pin is
driven LOW, the STK14C88-3 conditionally initiates a STORE
operation after t

DELAY

. An actual STORE cycle only begins if a

WRITE to the SRAM takes place since the last STORE or
RECALL cycle. The HSB pin also acts as an open drain driver
that is internally driven LOW to indicate a busy condition, while
the STORE (initiated by any means) is in progress. Pull up this
pin with an external 10K ohm resistor to V

CAP 

if HSB is used

as a driver.

SRAM READ and WRITE operations, that are in progress
when HSB is driven LOW by any means, are given time to
complete before the STORE operation is initiated. After HSB
goes LOW, the STK14C88-3 continues SRAM operations for
t

DELAY

. During t

DELAY

, multiple SRAM READ operations take

place. If a WRITE is in progress when HSB is pulled LOW, it
allows a time, t

DELAY

 to complete. However, any SRAM

WRITE cycles requested after HSB goes LOW are inhibited
until HSB returns HIGH.

The HSB pin is used to synchronize multiple STK14C88-3
while using a single larger capacitor. To operate in this mode,
the HSB pin is connected together to the HSB pins from the
other STK14C88-3. An external pull up resistor to V

CAP

 is

required, since HSB acts as an open drain pull down. The
V

CAP

 pins from the other STK14C88-3 parts are tied together

and share a single capacitor. The capacitor size is scaled by
the number of devices connected to it. When any one of the
STK14C88-3 detects a power loss and asserts HSB, the
common HSB pin causes all parts to request a STORE

 

cycle.

(A STORE

 

takes place in those STK14C88-3 that are written

since the last nonvolatile cycle.)

During any STORE operation, regardless of how it is initiated,
the STK14C88-3 continues to drive the HSB pin LOW,
releasing it only when the STORE is complete. After
completing the STORE operation, the STK14C88-3 remains
disabled until the HSB pin returns HIGH.

If HSB is not used, it is left unconnected.

Hardware RECALL (Power Up)

During power up or after any low power condition (V

CC

  <

V

RESET

), an internal RECALL request is latched. When V

CC

once again exceeds the sense voltage of V

SWITCH

, a RECALL

cycle is automatically initiated and takes t

HRECALL

 to complete.

If the STK14C88-3 is in a WRITE

 

state at the end of power up

RECALL, the SRAM

 

data is corrupted. To help avoid this

situation, a 10 Kohm resistor is connected either between WE
and system V

CC

 or between CE and system V

CC

.

Software STORE

Data is transferred from the SRAM to the nonvolatile memory
by a software address sequence. The STK14C88-3 software
STORE cycle is initiated by executing sequential CE controlled
READ cycles from six specific address locations in exact
order. During the STORE cycle, an erase of the previous
nonvolatile data is first performed followed by a program of the
nonvolatile elements. When a STORE cycle is initiated, input
and output are disabled until the cycle is completed.

Because a sequence of READs from specific addresses is
used for STORE initiation, it is important that no other READ
or WRITE accesses intervene in the sequence. If they
intervene, the sequence is aborted and no STORE or RECALL
takes place.

To initiate the software STORE cycle, the following READ
sequence is performed:

1. Read address 0x0E38, Valid READ

2. Read address 0x31C7, Valid READ

3. Read address 0x03E0, Valid READ

4. Read address 0x3C1F, Valid READ

5. Read address 0x303F, Valid READ

6. Read address 0x0FC0, Initiate STORE cycle

The software sequence is clocked with CE controlled READs.
When the sixth address in the sequence is entered, the
STORE cycle commences and the chip is disabled. It is
important that READ cycles and not WRITE cycles are used
in the sequence. It is not necessary that OE is LOW for a valid
sequence. After the t

STORE

 cycle time is fulfilled, the SRAM is

again activated for READ and WRITE operation.

Figure 3.  AutoStore Inhibit Mode

[+] Feedback 

Содержание STK14C88-3

Страница 1: ...volatile element in each memory cell The embedded nonvolatile elements incorporate QuantumTrap technology producing the world s most reliable nonvolatile memory The SRAM provides unlimited read and write cycles while independent nonvolatile data resides in the highly reliable QuantumTrap cell Data transfers from the SRAM to the nonvolatile elements the STORE operation takes place automatically at ...

Страница 2: ...OW When LOW selects the chip When HIGH deselects the chip OE G Input Output Enable Active LOW The active LOW OE input enables the data output buffers during read cycles Deasserting OE HIGH causes the IO pins to tri state VSS Ground Ground for the Device The device is connected to ground of the system VCC Power Supply Power Supply Inputs to the Device HSB Input or Output Hardware Store Busy HSB Whe...

Страница 3: ... of an CE controlled WRITE Keep OE HIGH during the entire WRITE cycle to avoid data bus contention on common IO lines If OE is left LOW internal circuitry turns off the output buffers tHZWE after WE goes LOW AutoStore Operation The STK14C88 3 can be powered in one of three storage opera tions During normal operation the device draws current from VCC to charge a capacitor connected to the VCAP pin ...

Страница 4: ... HSB pin LOW releasing it only when the STORE is complete After completing the STORE operation the STK14C88 3 remains disabled until the HSB pin returns HIGH If HSB is not used it is left unconnected Hardware RECALL Power Up During power up or after any low power condition VCC VRESET an internal RECALL request is latched When VCC once again exceeds the sense voltage of VSWITCH a RECALL cycle is au...

Страница 5: ...on VCAP and VCC crosses VSWITCH on the way down the STK14C88 3 attempts to pull HSB LOW If HSB does not actually get below VIL the part stops trying to pull HSB LOW and aborts the STORE attempt Hardware Protect The STK14C88 3 offers hardware protection against inadvertent STORE operation and SRAM WRITEs during low voltage condi tions When VCAP VSWITCH all externally initiated STORE operations and ...

Страница 6: ...to meet this requirement and not exceed the max VCAP value because the higher inrush currents may reduce the reliability of the internal pass transistor Customers who want to use a larger VCAP value to ensure there is extra store charge should discuss their VCAP size selection with Cypress to understand any impact on the VCAP voltage level at the end of a tRECALL period Table 2 Hardware Mode Selec...

Страница 7: ...tRC 200 ns 5V 25 C Typical WE VCC 0 2V All other inputs cycling Dependent on output loading and cycle rate Values obtained without output loads 9 mA ICC4 Average VCAP Current during AutoStore Cycle All Inputs Do Not Care VCC Max Average current for duration tSTORE 2 mA ISB1 7 Average VCC Current Standby Cycling TTL Input Levels tRC 35ns CE VIH tRC 45ns CE VIH Commercial 18 16 mA Industrial 19 17 m...

Страница 8: ...ce In the following table the thermal resistance parameters are listed 8 Parameter Description Test Conditions 32 SOIC 32 PDIP Unit ΘJA Thermal Resistance Junction to Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance per EIA JESD51 TBD TBD C W ΘJC Thermal Resistance Junction to Case TBD TBD C W Figure 6 AC Test Loads AC Test Conditions 3 3V Output ...

Страница 9: ...CE 11 tEHQZ Chip Disable to Output Inactive 13 15 ns tLZOE 11 tGLQX Output Enable to Output Active 0 0 ns tHZOE 11 tGHQZ Output Disable to Output Inactive 13 15 ns tPU 8 tELICCH Chip Enable to Power Active 0 0 ns tPD 8 tEHICCL Chip Disable to Power Standby 35 45 ns Switching Waveforms Figure 7 SRAM Read Cycle 1 Address Controlled 9 10 Figure 8 SRAM Read Cycle 2 CE and OE Controlled 9 W5 W W2 5 66 ...

Страница 10: ...0 ns tHA tWHAX tEHAX Address Hold After End of Write 0 0 ns tHZWE 11 12 tWLQZ Write Enable to Output Disable 13 15 ns tLZWE 11 tWHQX Output Active After End of Write 5 5 ns Switching Waveforms Figure 9 SRAM Write Cycle 1 WE Controlled 13 14 Figure 10 SRAM Write Cycle 2 CE Controlled 13 14 tWC tSCE tHA tAW tSA tPWE tSD tHD tHZWE tLZWE ADDRESS CE WE DATA IN DATA OUT DATA VALID HIGH IMPEDANCE PREVIOU...

Страница 11: ... Low Voltage Reset Level 2 4 V VSWITCH Low Voltage Trigger Level 2 7 2 95 V tDELAY 16 tBLQZ Time Allowed to Complete SRAM Cycle 1 μs Switching Waveforms Figure 11 AutoStore Power Up RECALL WE Notes 15 tHRECALL starts from the time VCC rises above VSWITCH 16 CE and OE low and WE high for output behavior 17 HSB is asserted low for 1us when VCAP drops through VSWITCH If an SRAM WRITE has not taken pl...

Страница 12: ... 18 19 tELAX Address Hold Time 20 20 ns tRECALL RECALL Duration 20 20 μs Switching Waveforms Figure 12 CE Controlled Software STORE RECALL Cycle 19 tRC tRC tSA tSCE tHACE tSTORE tRECALL DATA VALID DATA VALID 6 S S E R D D A 1 S S E R D D A HIGH IMPEDANCE ADDRESS CE OE DQ DATA Notes 18 The software sequence is clocked on the falling edge of CE without involving OE double clocking will abort the seq...

Страница 13: ...TK14C88 3 Unit Min Max tPHSB tHLHX Hardware STORE Pulse Width 15 ns tDHSB 16 20 tRECOVER tHHQX Hardware STORE High to Inhibit Off 700 ns tHLBL Hardware STORE Low to STORE Busy 300 ns Switching Waveforms Figure 13 Hardware STORE Cycle 3 6 Note 20 tDHSB is only applicable after tSTORE is complete Feedback ...

Страница 14: ...l STK14C88 3NF45 51 85127 32 pin SOIC STK14C88 3WF45 51 85018 32 pin PDIP STK14C88 3NF45ITR 51 85127 32 pin SOIC Industrial STK14C88 3NF45I 51 85127 32 pin SOIC STK14C88 3WF45I 51 85018 32 pin PDIP All parts are Pb free The above table contains Final information Please contact your local Cypress sales representative for availability of these parts Packaging Option TR Tape and Reel Blank Tube Speed...

Страница 15: ...SIONS IN INCHES MM MIN MAX 0 292 7 416 0 299 7 594 0 405 10 287 0 419 10 642 0 050 1 270 TYP 0 090 2 286 0 100 2 540 0 004 0 101 0 0100 0 254 0 006 0 152 0 012 0 304 0 021 0 533 0 041 1 041 0 026 0 660 0 032 0 812 0 004 0 101 REFERENCE JEDEC MO 119 PART S32 3 STANDARD PKG SZ32 3 LEAD FREE PKG 0 014 0 355 0 020 0 508 0 810 20 574 0 822 20 878 51 85127 A Feedback ...

Страница 16: ...STK14C88 3 Document Number 001 50592 Rev Page 16 of 17 Figure 15 32 Pin 600 Mil PDIP 51 85018 Package Diagrams continued 3 4 0 3 3 3 8 51 85018 A Feedback ...

Страница 17: ...as specified in the applicable agreement Any reproduction modification translation compilation or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress Disclaimer CYPRESS MAKES NO WARRANTY OF ANY KIND EXPRESS OR IMPLIED WITH REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNE...

Отзывы: