background image

STK11C68

Document Number: 001-50638 Rev. **

Page 3 of 16

Device Operation

The STK11C68 is a versatile memory chip that provides several
modes of operation. The STK16C88 can operate as a standard
8K x 8 SRAM. A

 

8K x 8 array of nonvolatile storage elements

shadow the SRAM. SRAM data can be copied nonvolatile
memory or nonvolatile data can be recalled to the SRAM.

SRAM Read

The STK11C68 performs a Read cycle whenever CE and OE are
LOW while WE is HIGH. The address specified on pins A

0–12

determines the 8,192 data bytes accessed. When the Read is
initiated by an address transition, the outputs are valid after a
delay of t

AA

 (Read cycle 1). If the Read is initiated by CE or OE,

the outputs are valid at t

ACE

 or at t

DOE

, whichever is later (Read

cycle 2). The data outputs repeatedly respond to address
changes within the t

AA

 access time without the need for transi-

tions on any control input pins, and remains valid until another
address change or until CE or OE is brought HIGH, or WE
brought LOW.

SRAM Write

A Write cycle is performed whenever CE and WE are LOW. The
address inputs must be stable prior to entering the Write cycle
and must remain stable until either CE or WE goes HIGH at the
end of the cycle. The data on the common IO pins DQ

0–7

 are

written into the memory if it has valid t

SD

, before the end of a WE

controlled Write or before the end of an CE controlled Write.
Keep OE HIGH during the entire Write cycle to avoid data bus
contention on common IO lines. If OE is left LOW, internal
circuitry turns off the output buffers t

HZWE 

after WE goes LOW.

Software STORE

Data is transferred from the SRAM to the nonvolatile memory by
a software address sequence. The STK11C68 software STORE
cycle is initiated by executing sequential CE controlled Read
cycles from six specific address locations in exact order. During
the STORE cycle, an erase of the previous nonvolatile data is
first performed followed by a program of the nonvolatile
elements. When a STORE cycle is initiated, input and output are
disabled until the cycle is completed.

Because a sequence of Reads from specific addresses is used
for STORE initiation, it is important that no other Read or Write
accesses intervene in the sequence. If they intervene, the
sequence is aborted and no STORE or RECALL takes place.

To initiate the software STORE cycle, the following Read
sequence is performed:

1. Read address 0x0000, Valid READ

2. Read address 0x1555, Valid READ

3. Read address 0x0AAA, Valid READ

4. Read address 0x1FFF, Valid READ

5. Read address 0x10F0, Valid READ

6. Read address 0x0F0F, Initiate STORE cycle

The software sequence is clocked with CE controlled Reads.
When the sixth address in the sequence is entered, the STORE
cycle commences and the chip is disabled. It is important that
Read cycles and not Write cycles are used in the sequence. It is

not necessary that OE is LOW for a valid sequence. After the
t

STORE

 cycle time is fulfilled, the SRAM is again activated for

Read and Write operation.

Software RECALL

Data is transferred from the nonvolatile memory to the SRAM by
a software address sequence. A software RECALL cycle is
initiated with a sequence of Read operations in a manner similar
to the software STORE initiation. To initiate the RECALL cycle,
the following sequence of CE controlled Read operations is
performed:

1. Read address 0x0000, Valid READ

2. Read address 0x1555, Valid READ

3. Read address 0x0AAA, Valid READ

4. Read address 0x1FFF, Valid READ

5. Read address 0x10F0, Valid READ

6. Read address 0x0F0E, Initiate RECALL cycle

Internally, RECALL is a two step procedure. First, the SRAM data
is cleared; then, the nonvolatile information is transferred into the
SRAM cells. After the t

RECALL

 cycle time, the SRAM is again

ready for Read and Write operations. The RECALL operation
does not alter the data in the nonvolatile elements. The nonvol-
atile data can be recalled an unlimited number of times.

Hardware RECALL (Power Up)

During power up or after any low power condition (V

CC

  <

V

RESET

), an internal RECALL request is latched. When V

CC

once again exceeds the sense voltage of V

SWITCH

, a RECALL

cycle is automatically initiated and takes t

HRECALL

 to complete.

If the STK11C68 is in a Write

 

state at the end of power up

RECALL, the SRAM

 

data is corrupted. To help avoid this

situation, a 10 Kohm resistor is connected either between WE
and system V

CC

 or between CE and system V

CC

.

Hardware Protect

The STK11C68 offers hardware protection against inadvertent
STORE

 

operation and SRAM Writes during low voltage condi-

tions. When V

CAP

<V

SWITCH

, all externally initiated STORE

operations and SRAM Writes are inhibited.

Noise Considerations

The STK11C68 is a high speed memory. It must have a high
frequency bypass capacitor of approximately 0.1 µF connected
between V

CC

 and V

SS,

 using leads and traces that are as short

as possible. As with all high speed CMOS ICs, careful routing of
power, ground, and signals reduce circuit noise.

Low Average Active Power

CMOS technology provides the STK11C68 the benefit of
drawing significantly less current when it is cycled at times longer
than 50 ns. 

Figure 2

 shows the relationship between I

CC

 and

Read or Write cycle time. Worst case current consumption is
shown for both CMOS and TTL input levels (commercial temper-
ature range, VCC = 5.5V, 100% duty cycle on chip enable). Only
standby current is drawn when the chip is disabled. The overall

[+] Feedback 

Содержание STK11C68

Страница 1: ...tatic RAM with a nonvol atile element in each memory cell The embedded nonvolatile elements incorporate QuantumTrap technology producing the world s most reliable nonvolatile memory The SRAM provides unlimited read and write cycles while independent nonvolatile data resides in the highly reliable QuantumTrap cell Data transfers under software control from SRAM to the nonvolatile elements the STORE...

Страница 2: ...ut Write Enable Input Active LOW When the chip is enabled and WE is LOW data on the IO pins is written to the specific address location CE E Input Chip Enable Input Active LOW When LOW selects the chip When HIGH deselects the chip OE G Input Output Enable Active LOW The active LOW OE input enables the data output buffers during read cycles Deasserting OE HIGH causes the IO pins to tri state VSS Gr...

Страница 3: ...software sequence is clocked with CE controlled Reads When the sixth address in the sequence is entered the STORE cycle commences and the chip is disabled It is important that Read cycles and not Write cycles are used in the sequence It is not necessary that OE is LOW for a valid sequence After the tSTORE cycle time is fulfilled the SRAM is again activated for Read and Write operation Software REC...

Страница 4: ...atus and so on must always program a unique NV pattern for example complex 4 byte pattern of 46 E6 49 53 hex or more random bytes as part of the final system manufacturing test to ensure these system routines work consistently Power up boot firmware routines should rewrite the nvSRAM into the desired state While the nvSRAM is shipped in a preset state best practice is to again rewrite the nvSRAM i...

Страница 5: ...nputs Do Not Care VCC Max Average current for duration tSTORE 3 mA ICC3 Average VCC Current at tRC 200 ns 5V 25 C Typical WE VCC 0 2V All other inputs cycling Dependent on output loading and cycle rate Values obtained without output loads 10 mA ISB1 2 VCC Standby Current Standby Cycling TTL Input Levels tRC 25 ns CE VIH tRC 35 ns CE VIH tRC 45 ns CE VIH Commercial 27 23 20 mA mA mA Industrial 28 2...

Страница 6: ...rameter Description Test Conditions 28 SOIC 28 CDIP 28 LCC Unit ΘJA Thermal Resistance Junction to Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance per EIA JESD51 TBD TBD TBD C W ΘJC Thermal Resistance Junction to Case TBD TBD TBD C W Figure 4 AC Test Loads AC Test Conditions 5 0V Output 30 pF R1 480Ω R2 255Ω Input Pulse Levels 0V to 3V Input Rise...

Страница 7: ... 5 5 5 ns tHZCE 6 tEHQZ Chip Disable to Output Inactive 10 13 15 ns tLZOE 6 tGLQX Output Enable to Output Active 0 0 0 ns tHZOE 6 tGHQZ Output Disable to Output Inactive 10 13 15 ns tPU 3 tELICCH Chip Enable to Power Active 0 0 0 ns tPD 3 tEHICCL Chip Disable to Power Standby 25 35 45 ns Switching Waveforms Figure 5 SRAM Read Cycle 1 Address Controlled 4 5 Figure 6 SRAM Read Cycle 2 CE and OE Cont...

Страница 8: ...ess Setup to Start of Write 0 0 0 ns tHA tWHAX tEHAX Address Hold After End of Write 0 0 0 ns tHZWE 6 7 tWLQZ Write Enable to Output Disable 10 13 15 ns tLZWE 6 tWHQX Output Active After End of Write 5 5 5 ns Switching Waveforms Figure 7 SRAM Write Cycle 1 WE Controlled 7 8 Figure 8 SRAM Write Cycle 2 CE and OE Controlled 7 8 tWC tSCE tHA tAW tSA tPWE tSD tHD tHZWE tLZWE ADDRESS CE WE DATA IN DATA...

Страница 9: ...Level 4 0 4 5 V VRESET Low Voltage Reset Level 3 6 V Switching Waveform Figure 9 AutoStore INHIBIT Power Up RECALL VCC VSWITCH VRESET POWER UP RECALL DQ DATA OUT STORE INHIBIT 5V tHRECALL POWER UP RECALL BROWN OUT STORE INHIBIT NO RECALL VCC DID NOT GO BELOW VRESET BROWN OUT STORE INHIBIT NO RECALL VCC DID NOT GO BELOW VRESET BROWN OUT STORE INHIBIT RECALL WHEN VCC RETURNS ABOVE VSWITCH Note 9 tHR...

Страница 10: ... ns tHACE 10 tELAX Address Hold Time 20 20 20 ns tRECALL 10 RECALL Duration 20 20 20 μs Switching Waveform Figure 10 CE Controlled Software STORE RECALL Cycle 11 tRC tRC tSA tSCE tHACE tSTORE tRECALL DATA VALID DATA VALID 6 S S E R D D A 1 S S E R D D A HIGH IMPEDANCE ADDRESS CE OE DQ DATA Notes 10 The software sequence is clocked on the falling edge of CE without involving OE double clocking abor...

Страница 11: ...058 28 Pin SOIC 330 mil STK11C68 C35 001 51695 28 Pin CDIP 300 mil STK11C68 L35 001 51696 28 Pin LCC 350 mil STK11C68 SF35ITR 001 85058 28 Pin SOIC 330 mil Industrial STK11C68 SF35I 001 85058 28 Pin SOIC 330 mil STK11C68 C35I 001 51695 28 Pin CDIP 300 mil STK11C68 L35I 001 51696 28 Pin LCC 350 mil Part Numbering Nomenclature Packaging Option TR Tape and Reel Blank Tube Speed 25 25 ns 35 35 ns Pack...

Страница 12: ... STK11C68 SF45ITR 001 85058 28 Pin SOIC 330 mil Industrial STK11C68 SF45I 001 85058 28 Pin SOIC 330 mil STK11C68 C45I 001 51695 28 Pin CDIP 300 mil STK11C68 L45I 001 51696 28 Pin LCC 350 mil All parts are Pb free The above table contains Final information Contact your local Cypress sales representative for availability of these parts Ordering Information continued Speed ns Ordering Code Package Di...

Страница 13: ...STK11C68 Document Number 001 50638 Rev Page 13 of 16 Package Diagrams Figure 11 28 Pin 330 Mil SOIC 51 85058 51 85058 A Feedback ...

Страница 14: ...STK11C68 Document Number 001 50638 Rev Page 14 of 16 Figure 12 28 Pin 300 Mil Side Braze DIL 001 51695 Package Diagrams continued 001 51695 Feedback ...

Страница 15: ...Number 001 50638 Rev Page 15 of 16 Figure 13 28 Pad 350 Mil LCC 001 51696 Package Diagrams continued 1 ALL DIMENSION ARE IN INCHES AND MILLIMETERS MIN MAX 2 JEDEC 95 OUTLINE MO 041 3 PACKAGE WEIGHT TBD 001 51696 Feedback ...

Страница 16: ...s specified in the applicable agreement Any reproduction modification translation compilation or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress Disclaimer CYPRESS MAKES NO WARRANTY OF ANY KIND EXPRESS OR IMPLIED WITH REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNES...

Отзывы: