background image

CY7C1511V18, CY7C1526V18

CY7C1513V18, CY7C1515V18

Document Number: 38-05363 Rev. *F

Page 14 of 32

IDCODE

The IDCODE instruction loads a vendor-specific, 32-bit code into
the instruction register. It also places the instruction register
between the TDI and TDO pins and shifts the IDCODE out of the
device when the TAP controller enters the Shift-DR state. The
IDCODE instruction is loaded into the instruction register at
power up or whenever the TAP controller is supplied a
Test-Logic-Reset state.

SAMPLE Z

The SAMPLE Z instruction connects the boundary scan register
between the TDI and TDO pins when the TAP controller is in a
Shift-DR state. The SAMPLE Z command puts the output bus
into a High-Z state until the next command is supplied during the
Update IR state.

SAMPLE/PRELOAD

SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When
the SAMPLE/PRELOAD instructions are loaded into the
instruction register and the TAP controller is in the Capture-DR
state, a snapshot of data on the input and output pins is captured
in the boundary scan register.

The user must be aware that the TAP controller clock can only
operate at a frequency up to 20 MHz, while the SRAM clock
operates more than an order of magnitude faster. Because there
is a large difference in the clock frequencies, it is possible that
during the Capture-DR state, an input or output undergoes a
transition. The TAP may then try to capture a signal while in
transition (metastable state). This does not harm the device, but
there is no guarantee as to the value that is captured.
Repeatable results may not be possible.

To guarantee that the boundary scan register captures the
correct value of a signal, the SRAM signal must be stabilized
long enough to meet the TAP controller's capture setup plus hold
times (t

CS

 and t

CH

). The SRAM clock input might not be captured

correctly if there is no way in a design to stop (or slow) the clock
during a SAMPLE/PRELOAD instruction. If this is an issue, it is
still possible to capture all other signals and simply ignore the
value of the CK and CK captured in the boundary scan register.

After the data is captured, it is possible to shift out the data by
putting the TAP into the Shift-DR state. This places the boundary
scan register between the TDI and TDO pins.

PRELOAD places an initial data pattern at the latched parallel
outputs of the boundary scan register cells before the selection
of another boundary scan test operation.

The shifting of data for the SAMPLE and PRELOAD phases can
occur concurrently when required, that is, while the data
captured is shifted out, the preloaded data can be shifted in.

BYPASS

When the BYPASS instruction is loaded in the instruction register
and the TAP is placed in a Shift-DR state, the bypass register is
placed between the TDI and TDO pins. The advantage of the
BYPASS instruction is that it shortens the boundary scan path
when multiple devices are connected together on a board.

EXTEST

The EXTEST instruction drives the preloaded data out through
the system output pins. This instruction also connects the
boundary scan register for serial access between the TDI and
TDO in the Shift-DR controller state.

EXTEST OUTPUT BUS TRI-STATE

IEEE Standard 1149.1 mandates that the TAP controller be able
to put the output bus into a tri-state mode.

The boundary scan register has a special bit located at bit #108.
When this scan cell, called the “extest output bus tri-state,” is
latched into the preload register during the Update-DR state in
the TAP controller, it directly controls the state of the output
(Q-bus) pins, when the EXTEST is entered as the current
instruction. When HIGH, it enables the output buffers to drive the
output bus. When LOW, this bit places the output bus into a
High-Z condition.

This bit can be set by entering the SAMPLE/PRELOAD or
EXTEST command, and then shifting the desired bit into that cell,
during the Shift-DR state. During Update-DR, the value loaded
into that shift-register cell latches into the preload register. When
the EXTEST instruction is entered, this bit directly controls the
output Q-bus pins. Note that this bit is preset HIGH to enable the
output when the device is powered up, and also when the TAP
controller is in the Test-Logic-Reset state.

Reserved

These instructions are not implemented but are reserved for
future use. Do not use these instructions.

[+] Feedback 

Содержание CY7C1511V18

Страница 1: ...rts the read port and the write port to access the memory array The read port has dedicated data outputs to support read operations and the write port has dedicated data inputs to support write operat...

Страница 2: ...eg Reg Reg 16 21 32 8 NWS 1 0 VREF Write Add Decode Write Reg 16 A 20 0 21 8 CQ CQ DOFF Q 7 0 8 8 8 Write Reg Write Reg Write Reg C C 2M x 8 Array 2M x 8 Array 2M x 8 Array 8 CLK A 20 0 Gen K K Contro...

Страница 3: ...VREF Write Add Decode Write Reg 36 A 19 0 20 18 CQ CQ DOFF Q 17 0 18 18 18 Write Reg Write Reg Write Reg C C 1M x 18 Array 1M x 18 Array 1M x 18 Array 1M x 18 Array 18 512K x 36 Array CLK A 18 0 Gen...

Страница 4: ...VDDQ VSS VSS VSS VDDQ NC NC Q0 M NC NC NC VSS VSS VSS VSS VSS NC NC D0 N NC D7 NC VSS A A A VSS NC NC NC P NC NC Q7 A A C A A NC NC NC R TDO TCK A A A C A A A TMS TDI CY7C1526V18 8M x 9 1 2 3 4 5 6 7...

Страница 5: ...A NC D0 Q0 R TDO TCK A A A C A A A TMS TDI CY7C1515V18 2M x 36 1 2 3 4 5 6 7 8 9 10 11 A CQ VSS 288M A WPS BWS2 K BWS1 RPS A VSS 144M CQ B Q27 Q18 D18 A BWS3 K BWS0 A D17 Q17 Q8 C D27 Q28 D19 VSS A N...

Страница 6: ...7C1511V18 8M x 9 4 arrays each of 2M x 9 for CY7C1526V18 4M x 18 4 arrays each of 1M x 18 for CY7C1513V18 and 2M x 36 4 arrays each of 512K x 36 for CY7C1515V18 Therefore only 21 address inputs are ne...

Страница 7: ...connected between ZQ and ground Alternatively this pin can be connected directly to VDDQ which enables the minimum impedance mode This pin cannot be connected directly to GND or left unconnected DOFF...

Страница 8: ...l logic of the device ignores the second read request Read accesses can be initiated on every other K clock rise Doing so pipelines the data flow such that data is transferred out of the device on eve...

Страница 9: ...input can deselect the specified port Deselecting a port does not affect the other port All pending transactions read and write are completed before the device is deselected Programmable Impedance An...

Страница 10: ...S ZQ CQ CQ Q K BUS MASTER CPU or ASIC DATA IN DATA OUT Address RPS WPS BWS Source K Source K Delayed K Delayed K CLKIN CLKIN Notes 2 X Don t Care H Logic HIGH L Logic LOW represents rising edge 3 Devi...

Страница 11: ...nly the upper nibble D 7 4 is written into the device D 3 0 remains unaltered CY7C1513V18 only the upper byte D 17 9 is written into the device D 8 0 remains unaltered H L L H During the data portion...

Страница 12: ...nly the byte D 17 9 is written into the device D 8 0 and D 35 18 remains unaltered H L H H L H During the Data portion of a write sequence only the byte D 17 9 is written into the device D 8 0 and D 3...

Страница 13: ...g edge of TCK Instruction Register Three bit instructions can be serially loaded into the instruction register This register is loaded when it is placed between the TDI and TDO pins as shown in TAP Co...

Страница 14: ...y scan register After the data is captured it is possible to shift out the data by putting the TAP into the Shift DR state This places the boundary scan register between the TDI and TDO pins PRELOAD p...

Страница 15: ...roller follows 11 TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 SELECT IR SCA...

Страница 16: ...IGH Voltage 0 65VDD VDD 0 3 V VIL Input LOW Voltage 0 3 0 35VDD V IX Input and Output Load Current GND VI VDD 5 5 A 0 0 1 2 29 30 31 Boundary Scan Register Identification Register 0 1 2 108 0 1 2 Inst...

Страница 17: ...DIH TDI Hold after Clock Rise 5 ns tCH Capture Hold after Clock Rise 5 ns Output Times tTDOV TCK Clock LOW to TDO Valid 10 ns tTDOX TCK Clock LOW to TDO Invalid 0 ns TAP Timing and Test Conditions Fig...

Страница 18: ...uction Codes Instruction Code Description EXTEST 000 Captures the input and output ring contents IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and TDO Th...

Страница 19: ...8P 35 10E 63 2A 91 3L 8 9R 36 10D 64 1A 92 1M 9 11P 37 9E 65 2B 93 1L 10 10P 38 10C 66 3B 94 3N 11 10N 39 11D 67 1C 95 3M 12 9P 40 9C 68 1B 96 1N 13 10M 41 9D 69 3D 97 2M 14 11N 42 11B 70 3C 98 3P 15...

Страница 20: ...k K K for 1024 cycles to lock the DLL DLL Constraints DLL uses K clock as its synchronizing input The input must have low phase jitter which is specified as tKC Var The DLL functions at frequencies do...

Страница 21: ...HIGH Voltage Note 18 VDDQ 2 0 12 VDDQ 2 0 12 V VOL Output LOW Voltage Note 19 VDDQ 2 0 12 VDDQ 2 0 12 V VOH LOW Output HIGH Voltage IOH 0 1 mA Nominal Impedance VDDQ 0 2 VDDQ V VOL LOW Output LOW Vol...

Страница 22: ...ic 300MHz x8 400 mA x9 400 x18 400 x36 400 278MHz x8 390 mA x9 390 x18 390 x36 390 250MHz x8 380 mA x9 380 x18 380 x36 380 200MHz x8 360 mA x9 360 x18 360 x36 360 167MHz x8 340 mA x9 340 x18 340 x36 3...

Страница 23: ...unction to Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance in accordance with EIA JESD51 16 3 C W JC Thermal Resistance Junction to Case 2 1 C W Fig...

Страница 24: ...RPS WPS 0 4 0 4 0 5 0 6 0 7 ns tSCDDR tIVKH Double Data Rate Control Setup to Clock K K Rise BWS0 BWS1 BWS2 BWS3 0 3 0 3 0 35 0 4 0 5 ns tSD 25 tDVKH D X 0 Setup to Clock K K Rise 0 3 0 3 0 35 0 4 0...

Страница 25: ...Clock C C Rise to High Z Active to High Z 26 27 0 45 0 45 0 45 0 45 0 50 ns tCLZ tCHQX1 Clock C C Rise to Low Z 26 27 0 45 0 45 0 45 0 45 0 50 ns DLL Timing tKC Var tKC Var Clock Phase Jitter 0 20 0 2...

Страница 26: ...D tCLZ DOH tCHZ t t tKL tCYC tCCQO t CCQO tCQOH tCQOH KHKH KH Q00 Q03 Q01 Q02 Q20 Q23 Q21 Q22 tCO tCQDOH t D10 D11 D12 D13 t SD tHD tSD tHD D30 D31 D32 D33 Notes 28 Q00 refers to output from address A...

Страница 27: ...65 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1526V18 300BZI CY7C1513V18 300BZI CY7C1515V18 300BZI CY7C1511V18 300BZXI 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 m...

Страница 28: ...250BZXI 200 CY7C1511V18 200BZC 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Commercial CY7C1526V18 200BZC CY7C1513V18 200BZC CY7C1515V18 200BZC CY7C1511V18 200BZXC 51 85195 165 Ball...

Страница 29: ...18 167BZXC CY7C1511V18 167BZI 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1526V18 167BZI CY7C1513V18 167BZI CY7C1515V18 167BZI CY7C1511V18 167BZXI 51 85195 165 Ball Fi...

Страница 30: ...3V18 CY7C1515V18 Document Number 38 05363 Rev F Page 30 of 32 Package Diagram Figure 6 165 ball FBGA 15 x 17 x 1 4 mm 51 85195 0 2 2 8 8 8 3 4 0 0 2 2 4 0 6 7 44 6 7 0 2 0 2 3 2 0 490 3 2 3 3 4 3 0 7...

Страница 31: ...nal Added CY7C1526V18 part number to the title Added 278 MHz speed Bin Changed address of Cypress Semiconductor Corporation on Page 1 from 3901 North First Street to 198 Champion Court Changed C C Pin...

Страница 32: ...above is prohibited without the express written permission of Cypress Disclaimer CYPRESS MAKES NO WARRANTY OF ANY KIND EXPRESS OR IMPLIED WITH REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE...

Отзывы: