background image

CY7C1510JV18, CY7C1525JV18
CY7C1512JV18, CY7C1514JV18

Document #: 001-14435 Rev. *C

Page 8 of 26

Functional Overview

The CY7C1510JV18, CY7C1525JV18, CY7C1512JV18, and
CY7C1514JV18 are synchronous pipelined Burst SRAMs with a
read port and a write port. The read port is dedicated to read
operations and the write port is dedicated to write operations.
Data flows into the SRAM through the write port and flows out
through the read port. These devices multiplex the address
inputs to minimize the number of address pins required. By
having separate read and write ports, the QDR-II completely
eliminates the need to “turn-around” the data bus and avoids any
possible data contention, thereby simplifying system design.
Each access consists of two 8-bit data transfers in the case of
CY7C1510JV18, two 9-bit data transfers in the case of
CY7C1525JV18, two 18-bit data transfers in the case of
CY7C1512JV18, and two 36-bit data transfers in the case of
CY7C1514JV18 in one clock cycle. 

This device operates with a read latency of one and half cycles
when DOFF pin is tied HIGH. When DOFF pin is set LOW or
connected to V

SS

 then the device behaves in QDR-I mode with

a read latency of one clock cycle. 

Accesses for both ports are initiated on the rising edge of the
positive input clock (K). All synchronous input timing is refer-
enced from the rising edge of the input clocks (K and K) and all
output timing is referenced to the output clocks (C and C, or K
and K when in single clock mode).

All synchronous data inputs (D

[x:0]

) pass through input registers

controlled by the input clocks (K and K). All synchronous data
outputs (Q

[x:0]

) pass through output registers controlled by the

rising edge of the output clocks (C and C, or K and K when in
single clock mode). 

All synchronous control (RPS, WPS, BWS

[x:0]

) inputs pass

through input registers controlled by the rising edge of the input
clocks (K and K).

CY7C1512JV18 is described in the following sections. The same
basic descriptions apply to CY7C1510JV18, CY7C1525JV18,
and CY7C1514JV18. 

Read Operations

The CY7C1512JV18 is organized internally as two arrays of 2M
x 18. Accesses are completed in a burst of two sequential 18-bit
data words. Read operations are initiated by asserting RPS
active at the rising edge of the positive input clock (K). The
address is latched on the rising edge of the K clock. The address
presented to the address inputs is stored in the read address
register. Following the next K clock rise, the corresponding
lowest order 18-bit word of data is driven onto the Q

[17:0]

 using

C as the output timing reference. On the subsequent rising edge
of C, the next 18-bit data word is driven onto the Q

[17:0]

. The

requested data is valid 0.45 ns from the rising edge of the output
clock (C and C or K and K when in single clock mode).

Synchronous internal circuitry automatically tri-states the outputs
following the next rising edge of the output clocks (C/C). This
enables for a seamless transition between devices without the
insertion of wait states in a depth expanded memory. 

Write Operations

Write operations are initiated by asserting WPS active at the
rising edge of the positive input clock (K). On the same K clock
rise the data presented to D

[17:0]

 is latched and stored into the

lower 18-bit write data register, provided BWS

[1:0]

 are both

asserted active. On the subsequent rising edge of the negative
input clock (K), the address is latched and the information
presented to D

[17:0]

 is also stored into the write data register,

provided BWS

[1:0]

 are both asserted active. The 36 bits of data

are then written into the memory array at the specified location. 

When deselected, the write port ignores all inputs after the
pending write operations have been completed. 

Byte Write Operations

Byte write operations are supported by the CY7C1512JV18. A
write operation is initiated as described in the 

Write Operations

section. The bytes that are written are determined by BWS

0

 and

BWS

1

, which are sampled with each set of 18-bit data words.

Asserting the byte write select input during the data portion of a
write latches the data being presented and writes it into the
device. Deasserting the byte write select input during the data
portion of a write enables the data stored in the device for that
byte to remain unaltered. This feature can be used to simplify
read, modify, or write operations to a byte write operation.

Single Clock Mode

The CY7C1510JV18 can be used with a single clock that
controls both the input and output registers. In this mode the
device recognizes only a single pair of input clocks (K and K) that
control both the input and output registers. This operation is
identical to the operation if the device had zero skew between
the K/K and C/C clocks. All timing parameters remain the same
in this mode. To use this mode of operation, the user must tie C
and C HIGH at power on. This function is a strap option and not
alterable during device operation.

Concurrent Transactions

The read and write ports on the CY7C1512JV18 operate
completely independently of one another. As each port latches
the address inputs on different clock edges, the user can read or
write to any location, regardless of the transaction on the other
port. The user can start reads and writes in the same clock cycle.
If the ports access the same location at the same time, the SRAM
delivers the most recent information associated with the
specified address location. This includes forwarding data from a
write cycle that was initiated on the previous K clock rise.

Depth Expansion

The CY7C1512JV18 has a port select input for each port. This
enables for easy depth expansion. Both port selects are sampled
on the rising edge of the positive input clock only (K). Each port
select input can deselect the specified port. Deselecting a port
does not affect the other port. All pending transactions (read and
write) are completed before the device is deselected. 

Programmable Impedance

An external resistor, RQ, must be connected between the ZQ pin
on the SRAM and V

SS 

to enable the SRAM to adjust its output

driver impedance. The value of RQ must be 5X the value of the
intended line impedance driven by the SRAM. The allowable
range of RQ to guarantee impedance matching with a tolerance
of ±15% is between 175

Ω

 and 350

Ω

with V

DDQ

= 1.5V.  The

output impedance is adjusted every 1024 cycles upon power up
to account for drifts in supply voltage and temperature.

[+] Feedback 

[+] Feedback 

Содержание CY7C1510JV18

Страница 1: ...ynchronous Pipelined SRAMs equipped with QDR II architecture QDR II architecture consists of two separate ports the read port and the write port to access the memory array The read port has dedicated...

Страница 2: ...ta Reg RPS WPS Control Logic Address Register Reg Reg Reg 8 22 16 8 NWS 1 0 VREF Write Add Decode Write Reg 8 A 21 0 22 CQ CQ DOFF Q 7 0 8 8 8 Write Reg C C 4M x 8 Array 2M x 9 Array CLK A 20 0 Gen K...

Страница 3: ...S WPS Control Logic Address Register Reg Reg Reg 18 21 36 18 BWS 1 0 VREF Write Add Decode Write Reg 18 A 20 0 21 CQ CQ DOFF Q 17 0 18 18 18 Write Reg C C 2M x 18 Array 1M x 36 Array CLK A 19 0 Gen K...

Страница 4: ...Q VSS VSS VSS VDDQ NC NC Q0 M NC NC NC VSS VSS VSS VSS VSS NC NC D0 N NC D7 NC VSS A A A VSS NC NC NC P NC NC Q7 A A C A A NC NC NC R TDO TCK A A A C A A A TMS TDI CY7C1525JV18 8M x 9 1 2 3 4 5 6 7 8...

Страница 5: ...0 Q0 R TDO TCK A A A C A A A TMS TDI CY7C1514JV18 2M x 36 1 2 3 4 5 6 7 8 9 10 11 A CQ NC 288M A WPS BWS2 K BWS1 RPS A NC 144M CQ B Q27 Q18 D18 A BWS3 K BWS0 A D17 Q17 Q8 C D27 Q28 D19 VSS A A A VSS D...

Страница 6: ...rrays each of 4M x 8 for CY7C1510JV18 8M x 9 2 arrays each of 4M x 9 for CY7C1525JV18 4M x 18 2 arrays each of 2M x 18 for CY7C1512JV18 and 2M x 36 2 arrays each of 1M x 36 for CY7C1514JV18 Therefore...

Страница 7: ...cannot be connected directly to GND or left unconnected DOFF Input DLL Turn Off Active LOW Connecting this pin to ground turns off the DLL inside the device The timing in the operation with the DLL t...

Страница 8: ...rising edge of the positive input clock K On the same K clock rise the data presented to D 17 0 is latched and stored into the lower 18 bit write data register provided BWS 1 0 are both asserted activ...

Страница 9: ...DLL is locked after 1024 cycles of stable clock The DLL can also be reset by slowing or stopping the input clocks K and K for a minimum of 30 ns However it is not necessary to reset the DLL to lock t...

Страница 10: ...written into the device D 17 9 remains unaltered H L L H During the data portion of a write sequence CY7C1510JV18 only the upper nibble D 7 4 is written into the device D 3 0 remains unaltered CY7C15...

Страница 11: ...the device D 35 9 remains unaltered L H H H L H During the Data portion of a write sequence only the lower byte D 8 0 is written into the device D 35 9 remains unaltered H L H H L H During the Data p...

Страница 12: ...e of TCK Instruction Register Three bit instructions can be serially loaded into the instruction register This register is loaded when it is placed between the TDI and TDO pins as shown in TAP Control...

Страница 13: ...gister After the data is captured it is possible to shift out the data by putting the TAP into the Shift DR state This places the boundary scan register between the TDI and TDO pins PRELOAD places an...

Страница 14: ...r follows 9 TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 SELECT IR SCAN CAPT...

Страница 15: ...oltage 0 65VDD VDD 0 3 V VIL Input LOW Voltage 0 3 0 35VDD V IX Input and Output Load Current GND VI VDD 5 5 A 0 0 1 2 29 30 31 Boundary Scan Register Identification Register 0 1 2 108 0 1 2 Instructi...

Страница 16: ...DI Hold after Clock Rise 5 ns tCH Capture Hold after Clock Rise 5 ns Output Times tTDOV TCK Clock LOW to TDO Valid 10 ns tTDOX TCK Clock LOW to TDO Invalid 0 ns TAP Timing and Test Conditions Figure 2...

Страница 17: ...ction Codes Instruction Code Description EXTEST 000 Captures the input and output ring contents IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and TDO Thi...

Страница 18: ...5 10E 63 2A 91 3L 8 9R 36 10D 64 1A 92 1M 9 11P 37 9E 65 2B 93 1L 10 10P 38 10C 66 3B 94 3N 11 10N 39 11D 67 1C 95 3M 12 9P 40 9C 68 1B 96 1N 13 10M 41 9D 69 3D 97 2M 14 11N 42 11B 70 3C 98 3P 15 9M 4...

Страница 19: ...e stable power and clock K K for 1024 cycles to lock the DLL DLL Constraints DLL uses K clock as its synchronizing input The input must have low phase jitter which is specified as tKC Var The DLL func...

Страница 20: ...12 V VOL Output LOW Voltage Note 17 VDDQ 2 0 12 VDDQ 2 0 12 V VOH LOW Output HIGH Voltage IOH 0 1 mA Nominal Impedance VDDQ 0 2 VDDQ V VOL LOW Output LOW Voltage IOL 0 1 mA Nominal Impedance VSS 0 2 V...

Страница 21: ...eters Parameter Description Test Conditions 165 FBGA Package Unit JA Thermal Resistance Junction to Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance...

Страница 22: ...45 0 45 ns tCQOH tCHCQX Echo Clock Hold after C C Clock Rise 0 45 0 45 ns tCQD tCQHQV Echo Clock High to Data Valid 0 27 0 30 ns tCQDOH tCQHQX Echo Clock High to Data Invalid 0 27 0 30 ns tCQH tCQHCQ...

Страница 23: ...1 D31 D11 D10 D60 Q C C DON T CARE UNDEFINED t CQ CQ tKHCH tCO tKHCH tCLZ CHZ tKH tKL Q00 Q01 Q20 tKHKH tCYC Q21 Q40 Q41 tCQD tDOH tCCQO tCQOH tCCQO tCQOH tCQDOH tCQH tCQHCQH Notes 25 Q00 refers to ou...

Страница 24: ...Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1525JV18 267BZI CY7C1512JV18 267BZI CY7C1514JV18 267BZI CY7C1510JV18 267BZXI 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Pb Fre...

Страница 25: ...5 M C A B 0 05 M C B A 0 15 4X 0 35 0 06 1 40 MAX SEATING PLANE 0 53 0 05 0 25 C 0 15 C PIN 1 CORNER TOP VIEW BOTTOM VIEW 2 3 4 5 6 7 8 9 10 10 00 14 00 B C D E F G H J K L M N 11 11 10 9 8 6 7 5 4 3...

Страница 26: ...for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreemen...

Отзывы: