background image

CY7C1411JV18, CY7C1426JV18

CY7C1413JV18, CY7C1415JV18

Document Number: 001-12557 Rev. *C

Page 12 of 28

IEEE 1149.1 Serial Boundary Scan (JTAG)

These SRAMs incorporate a serial boundary scan Test Access
Port (TAP) in the FBGA package. This part is fully compliant with
IEEE Standard #1149.1-2001. The TAP operates using JEDEC
standard 1.8V IO logic levels.

Disabling the JTAG Feature

It is possible to operate the SRAM without using the JTAG
feature. To disable the TAP controller, TCK must be tied LOW
(V

SS

) to prevent clocking of the device. TDI and TMS are inter-

nally pulled up and may be unconnected. They may alternatively
be connected to V

DD

 through a pull up resistor. TDO must be left

unconnected. Upon power up, the device comes up in a reset
state, which does not interfere with the operation of the device.

Test Access Port—Test Clock

The test clock is used only with the TAP controller. All inputs are
captured on the rising edge of TCK. All outputs are driven from
the falling edge of TCK.

Test Mode Select (TMS)

The TMS input is used to give commands to the TAP controller
and is sampled on the rising edge of TCK. This pin may be left
unconnected if the TAP is not used. The pin is pulled up inter-
nally, resulting in a logic HIGH level.

Test Data-In (TDI)

The TDI pin is used to serially input information into the registers
and can be connected to the input of any of the registers. The
register between TDI and TDO is chosen by the instruction that
is loaded into the TAP instruction register. For information on
loading the instruction register, see the 

TAP Controller State

Diagram

 on page 14. TDI is internally pulled up and can be

unconnected if the TAP is unused in an application. TDI is
connected to the most significant bit (MSB) on any register.

Test Data-Out (TDO)

The TDO output pin is used to serially clock data out from the
registers. The output is active, depending upon the current state
of the TAP state machine (see 

Instruction Codes

 on page 17).

The output changes on the falling edge of TCK. TDO is
connected to the least significant bit (LSB) of any register.

Performing a TAP Reset

A Reset is performed by forcing TMS HIGH (V

DD

) for five rising

edges of TCK. This Reset does not affect the operation of the
SRAM and can be performed while the SRAM is operating. At
power up, the TAP is reset internally to ensure that TDO comes
up in a high-Z state.

TAP Registers

Registers are connected between the TDI and TDO pins to scan
the data in and out of the SRAM test circuitry. Only one register
can be selected at a time through the instruction registers. Data
is serially loaded into the TDI pin on the rising edge of TCK. Data
is output on the TDO pin on the falling edge of TCK.

Instruction Register

Three-bit instructions can be serially loaded into the instruction
register. This register is loaded when it is placed between the TDI
and TDO pins, as shown in 

TAP Controller Block Diagram

 on

page 15. Upon power up, the instruction register is loaded with
the IDCODE instruction. It is also loaded with the IDCODE
instruction if the controller is placed in a reset state, as described
in the previous section.

When the TAP controller is in the Capture-IR state, the two least
significant bits are loaded with a binary “01” pattern to allow for
fault isolation of the board level serial test path.

Bypass Register

To save time when serially shifting data through registers, it is
sometimes advantageous to skip certain chips. The bypass
register is a single-bit register that can be placed between TDI
and TDO pins. This enables shifting of data through the SRAM
with minimal delay. The bypass register is set LOW (V

SS

) when

the BYPASS instruction is executed.

Boundary Scan Register

The boundary scan register is connected to all of the input and
output pins on the SRAM. Several No Connect (NC) pins are also
included in the scan register to reserve pins for higher density
devices.

The boundary scan register is loaded with the contents of the
RAM input and output ring when the TAP controller is in the
Capture-DR state and is then placed between the TDI and TDO
pins when the controller is moved to the Shift-DR state. The
EXTEST, SAMPLE/PRELOAD, and SAMPLE Z instructions can
be used to capture the contents of the input and output ring.

The 

Boundary Scan Order

 on page 18 shows the order in which

the bits are connected. Each bit corresponds to one of the bumps
on the SRAM package. The MSB of the register is connected to
TDI, and the LSB is connected to TDO.

Identification (ID) Register

The ID register is loaded with a vendor-specific, 32-bit code
during the Capture-DR state when the IDCODE command is
loaded in the instruction register. The IDCODE is hardwired into
the SRAM and can be shifted out when the TAP controller is in
the Shift-DR state. The ID register has a vendor code and other
information described in 

Identification Register Definitions

 on

page 17.

TAP Instruction Set

Eight different instructions are possible with the three-bit
instruction register. All combinations are listed in 

Instruction

Codes

 on page 17. Three of these instructions are listed as

RESERVED and must not be used. The other five instructions
are described in this section in detail.

Instructions are loaded into the TAP controller during the Shift-IR
state when the instruction register is placed between TDI and
TDO. During this state, instructions are shifted through the
instruction register through the TDI and TDO pins. To execute
the instruction after it is shifted in, the TAP controller must be
moved into the Update-IR state.

[+] Feedback 

Содержание CY7C1411JV18

Страница 1: ...CY7C1415JV18 are 1 8V Synchronous Pipelined SRAMs equipped with QDR II architecture QDR II architecture consists of two separate ports to access the memory array The read port has dedicated data outp...

Страница 2: ...r Reg Reg Reg 16 20 32 8 NWS 1 0 VREF Write Add Decode Write Reg 16 A 20 0 20 8 CQ CQ DOFF Q 7 0 8 8 8 Write Reg Write Reg Write Reg C C 1M x 8 Array 1M x 8 Array 1M x 8 Array 8 CLK A 19 0 Gen K K Con...

Страница 3: ...VREF Write Add Decode Write Reg 36 A 18 0 19 18 CQ CQ DOFF Q 17 0 18 18 18 Write Reg Write Reg Write Reg C C 512K x 18 Array 512K x 18 Array 512K x 18 Array 512K x 18 Array 18 256K x 36 Array CLK A 1...

Страница 4: ...VSS VSS VSS VDDQ NC NC Q0 M NC NC NC VSS VSS VSS VSS VSS NC NC D0 N NC D7 NC VSS A A A VSS NC NC NC P NC NC Q7 A A C A A NC NC NC R TDO TCK A A A C A A A TMS TDI CY7C1426JV18 4M x 9 1 2 3 4 5 6 7 8 9...

Страница 5: ...A A C A A NC D0 Q0 R TDO TCK A A A C A A A TMS TDI CY7C1415JV18 1M x 36 1 2 3 4 5 6 7 8 9 10 11 A CQ NC 288M NC 72M WPS BWS2 K BWS1 RPS A NC 144M CQ B Q27 Q18 D18 A BWS3 K BWS0 A D17 Q17 Q8 C D27 Q28...

Страница 6: ...x 8 for CY7C1411JV18 4M x 9 4 arrays each of 1M x 9 for CY7C1426JV18 2M x 18 4 arrays each of 512K x 18 for CY7C1413JV18 and 1M x 36 4 arrays each of 256K x 36 for CY7C1415JV18 Therefore only 20 addre...

Страница 7: ...GND or left unconnected DOFF Input DLL Turn Off Active LOW Connecting this pin to ground turns off the DLL inside the device The timings in the DLL turned off operation differs from those listed in th...

Страница 8: ...ry other K clock rise Doing so pipelines the data flow such that data is transferred out of the device on every rising edge of the output clocks C and C or K and K when in single clock mode When the r...

Страница 9: ...impedance matching with a tolerance of 15 is between 175 and 350 with VDDQ 1 5V The output impedance is adjusted every 1024 cycles upon power up to account for drifts in supply voltage and temperatur...

Страница 10: ...data portion of a write sequence CY7C1411JV18 only the upper nibble D 7 4 is written into the device D 3 0 remains unaltered CY7C1413JV18 only the upper byte D 17 9 is written into the device D 8 0 r...

Страница 11: ...into the device D 35 9 remains unaltered L H H H L H During the data portion of a write sequence only the lower byte D 8 0 is written into the device D 35 9 remains unaltered H L H H L H During the d...

Страница 12: ...ling edge of TCK Instruction Register Three bit instructions can be serially loaded into the instruction register This register is loaded when it is placed between the TDI and TDO pins as shown in TAP...

Страница 13: ...scan register After the data is captured it is possible to shift out the data by putting the TAP into the Shift DR state This places the boundary scan register between the TDI and TDO pins PRELOAD pl...

Страница 14: ...ntroller follows 11 TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 SELECT IR S...

Страница 15: ...t HIGH Voltage 0 65VDD VDD 0 3 V VIL Input LOW Voltage 0 3 0 35VDD V IX Input and Output Load Current GND VI VDD 5 5 A 0 0 1 2 29 30 31 Boundary Scan Register Identification Register 0 1 2 108 0 1 2 I...

Страница 16: ...tTDIH TDI Hold after Clock Rise 5 ns tCH Capture Hold after Clock Rise 5 ns Output Times tTDOV TCK Clock LOW to TDO Valid 10 ns tTDOX TCK Clock LOW to TDO Invalid 0 ns TAP Timing and Test Conditions...

Страница 17: ...Instruction Codes Instruction Code Description EXTEST 000 Captures the input and output ring contents IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and T...

Страница 18: ...L 7 8P 35 10E 63 2A 91 3L 8 9R 36 10D 64 1A 92 1M 9 11P 37 9E 65 2B 93 1L 10 10P 38 10C 66 3B 94 3N 11 10N 39 11D 67 1C 95 3M 12 9P 40 9C 68 1B 96 1N 13 10M 41 9D 69 3D 97 2M 14 11N 42 11B 70 3C 98 3P...

Страница 19: ...lock K K for 1024 cycles to lock the DLL DLL Constraints DLL uses K clock as its synchronizing input The input must have low phase jitter which is specified as tKC Var The DLL functions at frequencies...

Страница 20: ...t HIGH Voltage Note 18 VDDQ 2 0 12 VDDQ 2 0 12 V VOL Output LOW Voltage Note 19 VDDQ 2 0 12 VDDQ 2 0 12 V VOH LOW Output HIGH Voltage IOH 0 1 mA Nominal Impedance VDDQ 0 2 VDDQ V VOL LOW Output LOW Vo...

Страница 21: ...18 355 x36 395 250 MHz x8 355 mA x9 355 x18 355 x36 370 200 MHz x8 300 mA x9 300 x18 300 x36 300 AC Electrical Characteristics Over the Operating Range 13 Parameter Description Test Conditions Min Typ...

Страница 22: ...unction to Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance in accordance with EIA JESD51 17 2 C W JC Thermal Resistance Junction to Case 3 2 C W Fig...

Страница 23: ...45 0 45 0 45 ns tDOH tCHQX Data Output Hold after Output C C Clock Rise Active to Active 0 45 0 45 0 45 ns tCCQO tCHCQV C C Clock Rise to Echo Clock Valid 0 45 0 45 0 45 ns tCQOH tCHCQX Echo Clock Hol...

Страница 24: ...tCQD tCLZ DOH tCHZ t t tKL tCYC tCCQO t CCQO tCQOH tCQOH KHKH KH Q00 Q03 Q01 Q02 Q20 Q23 Q21 Q22 tCO tCQDOH t tCQH tCQHCQH D10 D11 D12 D13 t SD tHD tSD tHD D30 D31 D32 D33 Notes 27 Q00 refers to outp...

Страница 25: ...all Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1426JV18 300BZI CY7C1413JV18 300BZI CY7C1415JV18 300BZI CY7C1411JV18 300BZXI 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 m...

Страница 26: ...5JV18 200BZXC CY7C1411JV18 200BZI 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1426JV18 200BZI CY7C1413JV18 200BZI CY7C1415JV18 200BZI CY7C1411JV18 200BZXI 51 85195 165...

Страница 27: ...JV18 CY7C1415JV18 Document Number 001 12557 Rev C Page 27 of 28 Package Diagram Figure 6 165 Ball FBGA 15 x 17 x 1 40 mm 51 85195 0 2 2 8 8 8 3 4 0 0 2 2 4 0 6 7 44 6 7 0 2 0 2 3 2 0 490 3 2 3 3 4 3 0...

Страница 28: ...RD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE Cypress reserves the right to make changes without further notice to the...

Отзывы: