background image

CY7C1392BV18, CY7C1992BV18
CY7C1393BV18, CY7C1394BV18

Document #: 38-05623 Rev. *D

Page 8 of 31

Functional Overview

The CY7C1392BV18, CY7C1992BV18, CY7C1393BV18, and
CY7C1394BV18 are synchronous pipelined Burst SRAMs
equipped with a DDR-II Separate IO interface. 

Accesses are initiated on the rising edge of the positive input
clock (K). All synchronous input timing is referenced from the
rising edge of the input clocks (K and K) and all output timing is
referenced to the rising edge of the output clocks (C/C, or K/K
when in single clock mode).

All synchronous data inputs (D

[x:0]

) pass through input registers

controlled by the rising edge of the input clocks (K and K). All
synchronous data outputs (Q

[x:0]

) pass through output registers

controlled by the rising edge of the output clocks (C/C, or K/K
when in single-clock mode). 

All synchronous control (R/W, LD, BWS

[0:X]

) inputs pass through

input registers controlled by the rising edge of the input clock (K). 

CY7C1393BV18 is described in the following sections. The
same basic descriptions apply to CY7C1392BV18,
CY7C1992BV18, and CY7C1394BV18.

Read Operations

The CY7C1393BV18 is organized internally as two arrays of
512K x 18. Accesses are completed in a burst of two sequential
18-bit data words. Read operations are initiated by asserting
R/W

 

HIGH and LD LOW at the rising edge of the positive input

clock (K). The address presented to address inputs is stored in
the read address register. Following the next K clock rise the
corresponding lowest order 18-bit word of data is driven onto the
Q

[17:0]

 using C as the output timing reference. On the subse-

quent rising edge of C, the next 18-bit data word is driven onto
the Q

[17:0]

. The requested data is valid 0.45 ns from the rising

edge of the output clock (C or C, or K and K when in single clock
mode, for 200 MHz and 250 MHz device). Read accesses can
be initiated on every rising edge of the positive input clock (K).
This pipelines the data flow such that data is transferred out of
the device on every rising edge of the output clocks, C/C (or K/K
when in single clock mode).

The CY7C1393BV18 first completes the pending read transac-
tions, when read access is deselected. Synchronous internal
circuitry automatically tri-states the output following the next
rising edge of the positive output clock (C).

Write Operations

Write operations are initiated by asserting R/W

 

LOW and LD

LOW at the rising edge of the positive input clock (K). The
address presented to address inputs is stored in the write
address register. On the following K clock rise the data presented
to D

[17:0]

 is latched and stored into the 18-bit write data register,

provided BWS

[1:0]

 are both asserted active. On the subsequent

rising edge of the negative input clock (K) the information
presented to D

[17:0]

 is also stored into the write data register,

provided BWS

[1:0]

 are both asserted active. The 36 bits of data

are then written into the memory array at the specified location.
Write accesses can be initiated on every rising edge of the
positive input clock (K). This pipelines the data flow such that 18
bits of data can be transferred into the device on every rising
edge of the input clocks (K and K). 

When Write access is deselected, the device ignores all inputs
after the pending write operations are completed. 

Byte Write Operations

Byte write operations are supported by the CY7C1393BV18. A
write operation is initiated as described in the 

Write Operations

section. The bytes that are written are determined by BWS

0

 and

BWS

1

, which are sampled with each set of 18-bit data words.

Asserting the appropriate Byte Write Select input during the data
portion of a write latches the data being presented and writes it
into the device. Deasserting the Byte Write Select input during
the data portion of a write enables the data stored in the device
for that byte to remain unaltered. This feature can be used to
simplify read/modify/write operations to a byte write operation.

Single Clock Mode

The CY7C1393BV18 can be used with a single clock that
controls both the input and output registers. In this mode the
device recognizes only a single pair of input clocks (K and K) that
control both the input and output registers. This operation is
identical to the operation if the device had zero skew between
the K/K and C/C clocks. All timing parameters remain the same
in this mode. To use this mode of operation, tie C and C HIGH at
power on. This function is a strap option and not alterable during
device operation.

DDR Operation

The CY7C1393BV18 enables high-performance operation
through high clock frequencies (achieved through pipelining) and
double data rate mode of operation.

If a read occurs after a write cycle, address and data for the write
are stored in registers. The write information must be stored
because the SRAM cannot perform the last word write to the
array without conflicting with the read. The data stays in this
register until the next write cycle occurs. On the first write cycle
after the read(s), the stored data from the earlier write is written
into the SRAM array. This is called a posted write.

Depth Expansion

Depth expansion requires replicating the LD control signal for
each bank. All other control signals can be common between
banks as appropriate.

Programmable Impedance

An external resistor, RQ, must be connected between the ZQ pin
on the SRAM and V

SS 

to enable the SRAM to adjust its output

driver impedance. The value of RQ must be 5x the value of the
intended line impedance driven by the SRAM. The allowable
range of RQ to guarantee impedance matching with a tolerance
of ±15% is between 175

Ω

 and 350

Ω

with V

DDQ

= 1.5V.  The

output impedance is adjusted every 1024 cycles at power up to
account for drifts in supply voltage and temperature.

Echo Clocks

Echo clocks are provided on the DDR-II to simplify data capture
on high-speed systems. Two echo clocks are generated by the
DDR-II. CQ is referenced with respect to C and CQ is referenced
with respect to C. These are free-running clocks and are
synchronized to the output clock of the DDR-II. In the single clock
mode, CQ is generated with respect to K and CQ is generated
with respect to K. The timing for the echo clocks is shown in

Switching Characteristics

 on page 23.

[+] Feedback 

Содержание CY7C1392BV18

Страница 1: ...te port has data inputs to support write operations The DDR II SIO has separate data inputs and data outputs to completely eliminate the need to turn around the data bus required with common IO device...

Страница 2: ...Decode Read Data Reg LD Q 7 0 Reg Reg Reg 8 8 16 8 NWS 1 0 VREF Write Add Decode Write Data Reg 8 8 20 8 R W LD R W CQ CQ DOFF 1M x 8 Array Write Data Reg Control Logic C C 1M x 9 Array CLK A 19 0 Ge...

Страница 3: ...d Data Reg LD Q 17 0 Reg Reg Reg 18 36 18 BWS 1 0 VREF Write Add Decode Write Data Reg 18 18 19 18 R W LD R W CQ CQ DOFF 512K x 18 Array Write Data Reg Control Logic C C 18 256K x 36 Array CLK A 17 0...

Страница 4: ...VSS VSS VSS VDDQ NC NC Q0 M NC NC NC VSS VSS VSS VSS VSS NC NC D0 N NC D7 NC VSS A A A VSS NC NC NC P NC NC Q7 A A C A A NC NC NC R TDO TCK A A A C A A A TMS TDI CY7C1992BV18 2M x 9 1 2 3 4 5 6 7 8 9...

Страница 5: ...C D0 Q0 R TDO TCK A A A C A A A TMS TDI CY7C1394BV18 512K x 36 1 2 3 4 5 6 7 8 9 10 11 A CQ NC 288M NC 72M R W BWS2 K BWS1 LD NC 36M NC 144M CQ B Q27 Q18 D18 A BWS3 K BWS0 A D17 Q17 Q8 C D27 Q28 D19 V...

Страница 6: ...tions Internally the device is organized as 2M x 8 2 arrays each of 1M x 8 for CY7C1392BV18 2M x 9 2 arrays each of 1M x 9 for CY7C1992BV18 1M x 18 2 arrays each of 512K x 18 for CY7C1393BV18 and 512K...

Страница 7: ...nnected directly to VDDQ which enables the minimum impedance mode This pin cannot be connected directly to GND or left unconnected DOFF Input DLL Turn Off Active LOW Connecting this pin to ground turn...

Страница 8: ...k K This pipelines the data flow such that 18 bits of data can be transferred into the device on every rising edge of the input clocks K and K When Write access is deselected the device ignores all in...

Страница 9: ...024 clock cycles after a stable clock is presented The DLL may be disabled by applying ground to the DOFF pin When the DLL is turned off the device behaves in DDR I mode with one cycle latency and a l...

Страница 10: ...ten into the device D 17 9 remains unaltered H L L H During the data portion of a write sequence CY7C1392BV18 only the upper nibble D 7 4 is written into the device D 3 0 remains unaltered CY7C1393BV1...

Страница 11: ...the device D 35 9 remains unaltered L H H H L H During the data portion of a write sequence only the lower byte D 8 0 is written into the device D 35 9 remains unaltered H L H H L H During the data p...

Страница 12: ...edge of TCK Instruction Register Three bit instructions can be serially loaded into the instruction register This register is loaded when it is placed between the TDI and TDO pins as shown in TAP Con...

Страница 13: ...scan register After the data is captured it is possible to shift out the data by putting the TAP into the Shift DR state This places the boundary scan register between the TDI and TDO pins PRELOAD pl...

Страница 14: ...oller follows 9 TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 SELECT IR SCAN...

Страница 15: ...GH Voltage 0 65VDD VDD 0 3 V VIL Input LOW Voltage 0 3 0 35VDD V IX Input and Output Load Current GND VI VDD 5 5 A 0 0 1 2 29 30 31 Boundary Scan Register Identification Register 0 1 2 106 0 1 2 Instr...

Страница 16: ...IH TDI Hold after Clock Rise 5 ns tCH Capture Hold after Clock Rise 5 ns Output Times tTDOV TCK Clock LOW to TDO Valid 10 ns tTDOX TCK Clock LOW to TDO Invalid 0 ns TAP Timing and Test Conditions Figu...

Страница 17: ...ruction Codes Instruction Code Description EXTEST 000 Captures the input and output ring contents IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and TDO T...

Страница 18: ...7 2K 7 8P 34 11E 61 4B 88 1K 8 9R 35 10E 62 3A 89 2L 9 11P 36 10D 63 1H 90 3L 10 10P 37 9E 64 1A 91 1M 11 10N 38 10C 65 2B 92 1L 12 9P 39 11D 66 3B 93 3N 13 10M 40 9C 67 1C 94 3M 14 11N 41 9D 68 1B 95...

Страница 19: ...K K for 1024 cycles to lock the DLL DLL Constraints DLL uses K clock as its synchronizing input The input must have low phase jitter which is specified as tKC Var The DLL functions at frequencies dow...

Страница 20: ...H Output HIGH Voltage Note 16 VDDQ 2 0 12 VDDQ 2 0 12 V VOL Output LOW Voltage Note 17 VDDQ 2 0 12 VDDQ 2 0 12 V VOH LOW Output HIGH Voltage IOH 0 1 mA Nominal Impedance VDDQ 0 2 VDDQ V VOL LOW Output...

Страница 21: ...300 MHz x8 275 mA x9 275 x18 285 x36 300 278 MHz x8 265 mA x9 265 x18 275 x36 290 250 MHz x8 255 mA x9 255 x18 260 x36 275 200 MHz x8 245 mA x9 245 x18 250 x36 260 167 MHz x8 240 mA x9 240 x18 245 x36...

Страница 22: ...tion to Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance in accordance with EIA JESD51 18 7 C W JC Thermal Resistance Junction to Case 4 5 C W Figure...

Страница 23: ...LD R W 0 4 0 4 0 5 0 6 0 7 ns tSCDDR tIVKH Double Data Rate Control Setup to Clock K K Rise BWS0 BWS1 BWS2 BWS3 0 3 0 3 0 35 0 4 0 5 ns tSD 23 tDVKH D X 0 Setup to Clock K K Rise 0 3 0 3 0 35 0 4 0 5...

Страница 24: ...HQZ Clock C C Rise to High Z Active to High Z 24 25 0 45 0 45 0 45 0 45 0 50 ns tCLZ tCHQX1 Clock C C Rise to Low Z 24 25 0 45 0 45 0 45 0 45 0 50 ns DLL Timing tKC Var tKC Var Clock Phase Jitter 0 20...

Страница 25: ...C tSA tHA tSD tHD tSD tHD tCLZ tDOH SC tKH tKHKH tKL tCYC tCQD tCCQO tCQOH tCCQO tCQOH DON T CARE UNDEFINED A0 A1 A2 A3 A4 D20 D21 D30 D31 Q40 Q11 Q10 Q41 Q00 Q01 tCQDOH tCHZ Notes 26 Q00 refers to ou...

Страница 26: ...Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm Industrial CY7C1992BV18 300BZI CY7C1393BV18 300BZI CY7C1394BV18 300BZI CY7C1392BV18 300BZXI 51 85180 165 Ball Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm Pb...

Страница 27: ...250BZXI 200 CY7C1392BV18 200BZC 51 85180 165 Ball Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm Commercial CY7C1992BV18 200BZC CY7C1393BV18 200BZC CY7C1394BV18 200BZC CY7C1392BV18 200BZXC 51 85180 165 B...

Страница 28: ...8 167BZXC CY7C1392BV18 167BZI 51 85180 165 Ball Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm Industrial CY7C1992BV18 167BZI CY7C1393BV18 167BZI CY7C1394BV18 167BZI CY7C1392BV18 167BZXI 51 85180 165 Bal...

Страница 29: ...0 05 M C B A 0 15 4X 0 35 0 06 SEATING PLANE 0 53 0 05 0 25 C 0 15 C PIN 1 CORNER TOP VIEW BOTTOM VIEW 2 3 4 5 6 7 8 9 10 10 00 14 00 B C D E F G H J K L M N 11 11 10 9 8 6 7 5 4 3 2 1 P R P R K M N L...

Страница 30: ...anged C C Pin Description in the features section and Pin Description Added power up sequence details and waveforms Added foot notes 15 16 17 on page 18 Replaced Three state with Tri state Changed the...

Страница 31: ...as specified above is prohibited without the express written permission of Cypress Disclaimer CYPRESS MAKES NO WARRANTY OF ANY KIND EXPRESS OR IMPLIED WITH REGARD TO THIS MATERIAL INCLUDING BUT NOT LI...

Отзывы: