background image

 

CY7C1365C

Document #: 38-05690 Rev. *E

Page 7 of 18

Functional Overview

All synchronous inputs pass through input registers controlled
by the rising edge of the clock. Maximum access delay from
the clock rise (t

CDV

) is 6.5 ns (133-MHz device). 

The CY7C1365C supports secondary cache in systems
utilizing either a linear or interleaved burst sequence. The
interleaved burst order supports Pentium and i486 processors.
The linear burst sequence is suited for processors that utilize
a linear burst sequence. The burst order is user-selectable,
and is determined by sampling the MODE input. Accesses can
be initiated with either the Processor Address Strobe (ADSP)
or the Controller Address Strobe (ADSC). Address
advancement through the burst sequence is controlled by the
ADV input. A two-bit on-chip wraparound burst counter
captures the first address in a burst sequence and automati-
cally increments the address for the rest of the burst access.

Byte write operations are qualified with the Byte Write Enable
(BWE) and Byte Write Select (BW[A:D]) inputs. A Global Write
Enable (GW) overrides all byte write inputs and writes data to
all four bytes. All writes are simplified with on-chip
synchronous self-timed write circuitry.

Three synchronous Chip Selects (CE

1

, CE

2

, CE

3

) and an

asynchronous Output Enable (OE) provide for easy bank
selection and output tri-state control. ADSP is ignored if CE

1

is HIGH.

Single Read Accesses

A single read access is initiated when the following conditions
are satisfied at clock rise: (1) CE

1

, CE

2

, and CE

3

 are all

asserted active, and (2) ADSP or ADSC is asserted LOW (if
the access is initiated by ADSC, the write inputs must be
deasserted during this first cycle). The address presented to
the address inputs is latched into the address register and the
burst counter/control logic and presented to the memory core.
If the OE input is asserted LOW, the requested data will be
available at the data outputs a maximum to t

CDV

 after clock

rise. ADSP is ignored if CE

1

 is HIGH.

Single Write Accesses Initiated by ADSP

This access is initiated when the following conditions are
satisfied at clock rise: (1) CE

1

, CE

2

, CE

3

 are all asserted

active, and (2) ADSP is asserted LOW. The addresses
presented are loaded into the address register and the burst
inputs (GW, BWE, and BW[A:D]) are ignored during this first
clock cycle. If the write inputs are asserted active (see Write
Cycle Descriptions table for appropriate states that indicate a
write) on the next clock rise, the appropriate data will be
latched and written into the device.Byte writes are allowed.
During byte writes, BWA controls DQA and BWB controls
DQB, BWC controls DQC, and BWD controls DQD. All I/Os
are tri-stated during a byte write.Since this is a common I/O
device, the asynchronous OE input signal must be deasserted
and the I/Os must be tri-stated prior to the presentation of data
to DQs. As a safety precaution, the data lines are tri-stated
once a write cycle is detected, regardless of the state of OE.

Single Write Accesses Initiated by ADSC

This write access is initiated when the following conditions are
satisfied at clock rise: (1) CE

1

, CE

2

, and CE

3

 are all asserted

active, (2) ADSC is asserted LOW, (3) ADSP is deasserted
HIGH, and (4) the write input signals (GW, BWE, and BW[A:D])
indicate a write access. ADSC is ignored if ADSP is active
LOW.

The addresses presented are loaded into the address register
and the burst counter/control logic and delivered to the
memory core. The information presented to DQ[D:A] will be
written into the specified address location. Byte writes are
allowed. During byte writes, BWA controls DQA, BWB controls
DQB, BWC controls DQC, and BWD controls DQD. All I/Os
are tri-stated when a write is detected, even a byte write. Since
this is a common I/O device, the asynchronous OE input signal
must be deasserted and the I/Os must be tri-stated prior to the
presentation of data to DQs. As a safety precaution, the data
lines are tri-stated once a write cycle is detected, regardless
of the state of OE.

Burst Sequences

The CY7C1365C provides an on-chip two-bit wraparound
burst counter inside the SRAM. The burst counter is fed by
A[1:0], and can follow either a linear or interleaved burst order.
The burst order is determined by the state of the MODE input.
A LOW on MODE will select a linear burst sequence. A HIGH
on MODE will select an interleaved burst order. Leaving
MODE unconnected will cause the device to default to a inter-
leaved burst sequence.

Sleep Mode

The ZZ input pin is an asynchronous input. Asserting ZZ
places the SRAM in a power conservation “sleep” mode. Two
clock cycles are required to enter into or exit from this “sleep”
mode. While in this mode, data integrity is guaranteed.
Accesses pending when entering the “sleep” mode are not
considered valid nor is the completion of the operation
guaranteed. The device must be deselected prior to entering
the “sleep” mode. CEs, ADSP, and ADSC must remain
inactive for the duration of t

ZZREC

 after the ZZ input returns

LOW.

    

Interleaved Burst Address Table 
(MODE = Floating or V

DD

)

First 

Address

A1, A0

Second

Address

A1, A0

Third

Address

A1, A0

Fourth

Address

A1, A0

00

01

10

11

01

00

11

10

10

11

00

01

11

10

01

00

Linear Burst Address Table (MODE = GND)

First

Address

A

1

,

 

A

0

Second

Address

A

1

,

 

A

0

Third

Address

A

1

,

 

A

0

Fourth

Address

A

1

,

 

A

0

00

01

10

11

01

10

11

00

10

11

00

01

11

00

01

10

[+] Feedback 

Содержание CY7C1365C

Страница 1: ...ts include all addresses all data inputs address pipelining Chip Enable CE1 depth expansion Chip Enables CE2 and CE3 2 Burst Control inputs ADSC ADSP and ADV Write Enables BW A D and BWE and Global Wr...

Страница 2: ...ARRAY MODE A 1 0 ZZ DQs A0 A1 A ADV CLK ADSP ADSC BWD BWC BWB BWA BWE CE1 CE2 CE3 OE GW SLEEP CONTROL DQA BYTE WRITE REGISTER DQB BYTE WRITE REGISTER DQC BYTE WRITE REGISTER BYTE WRITE REGISTER DQD BY...

Страница 3: ...DDQ DQC DQC NC VDD NC VSS DQD DQD VDDQ VSSQ DQD DQD DQD DQD VSSQ VDDQ DQD DQD NC A A CE 1 CE 2 BWS D BWS C BWS B BWS A A V DD V SS CLK GW BWE OE ADSP A A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1...

Страница 4: ...VDDQ DQC DQC NC VDD NC VSS DQD DQD VDDQ VSSQ DQD DQD DQD DQD VSSQ VDDQ DQD DQD NC A A CE 1 CE 2 BWS D BWS C BWS B BWS A CE 3 V DD V SS CLK GW BWE OE ADSP A A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17...

Страница 5: ...throughout this document for BGA CE3 is sampled only when a new external address is loaded OE 86 Input Asynchronous Output Enable asynchronous input active LOW Controls the direction of the I O pins...

Страница 6: ...60 71 76 I O Ground Ground for the I O circuitry MODE 31 Input Static Selects Burst Order When tied to GND selects linear burst sequence When tied to VDD or left floating selects interleaved burst seq...

Страница 7: ...te writes BWA controls DQA and BWB controls DQB BWC controls DQC and BWD controls DQD All I Os are tri stated during a byte write Since this is a common I O device the asynchronous OE input signal mus...

Страница 8: ...Burst Next H X X L X H L H L L H Q Read Cycle Continue Burst Next H X X L X H L H H L H Tri State Write Cycle Continue Burst Next X X X L H H L L X L H D Write Cycle Continue Burst Next H X X L X H L...

Страница 9: ...H H Write Bytes C A DQPC DQPA H L H L H L Write Bytes C B DQPC DQPB H L H L L H Write Bytes C B A DQPC DQPB DQPA H L H L L L Write Byte D DQPD H L L H H H Write Bytes D A DQPD DQPA H L L H H L Write B...

Страница 10: ...IH Input HIGH Voltage for 3 3V I O 2 0 VDD 0 3V V for 2 5V I O 1 7 VDD 0 3V V VIL Input LOW Voltage 8 for 3 3V I O 0 3 0 8 V for 2 5V I O 0 3 0 7 V IX Input Leakage Current except ZZ and MODE GND VI V...

Страница 11: ...ollow standard test methods and procedures for measuring thermal impedance per EIA JESD51 29 41 C W JC Thermal Resistance Junction to Case 6 13 C W AC Test Loads and Waveforms OUTPUT R 317 R 351 5 pF...

Страница 12: ...s tADH ADSP ADSC Hold after CLK Rise 0 5 0 5 ns tWEH GW BWE BW A D Hold after CLK Rise 0 5 0 5 ns tADVH ADV Hold after CLK Rise 0 5 0 5 ns tDH Data Input Hold after CLK Rise 0 5 0 5 ns tCEH Chip Enabl...

Страница 13: ...CE2 is LOW or CE3 is HIGH tCYC tCL CLK tADH tADS ADDRESS t CH tAH tAS A1 tCEH tCES Data Out Q High Z tCLZ tDOH tCDV tOEHZ tCDV Single READ BURST READ tOEV tOELZ tCHZ Burst wraps around to its initial...

Страница 14: ...iming Diagrams continued tCYC t CL CLK tADH tADS ADDRESS t CH tAH tAS A1 tCEH tCES High Z BURST READ BURST WRITE D A2 D A2 1 D A2 1 D A1 D A3 D A3 1 D A3 2 D A2 3 A2 A3 Extended BURST WRITE D A2 2 Sin...

Страница 15: ...ed tCYC t CL CLK tADH tADS ADDRESS t CH tAH tAS A2 tCEH tCES Single WRITE D A3 A3 A4 BURST READ Back to Back READs High Z Q A2 Q A4 Q A4 1 Q A4 2 Q A4 3 t WEH t WES t OEHZ tDH tDS tCDV tOELZ A1 A5 A6...

Страница 16: ...ial CY7C1365C 133AJXI 100 pin Thin Quad Flat Pack 14 x 20 x 1 4 mm Lead Free 2 Chip Enable 100 CY7C1365C 100AXC 51 85050 100 pin Thin Quad Flat Pack 14 x 20 x 1 4 mm Lead Free 3 Chip Enable Commercial...

Страница 17: ...press products in life support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges Intel and Pentium are registered t...

Страница 18: ...page 6 Added Industrial operating range Updated Ordering Information Table B 377095 See ECN PCI Changed ISB2 from 30 to 40 mA Modified test condition in note 9 from VIH VDD to VIH VDD C 408725 See EC...

Отзывы: