background image

CY7C1141V18, CY7C1156V18
CY7C1143V18, CY7C1145V18

18-Mbit  QDR™-II+  SRAM 4-Word Burst

Architecture (2.0 Cycle Read Latency)

Cypress Semiconductor Corporation

198 Champion Court

San Jose

,

CA 95134-1709

408-943-2600

Document Number: 001-06583  Rev. *D

 Revised March 06, 2008

Features

Separate Independent read and write data ports

Supports concurrent transactions

300 MHz to 375 MHz clock for high bandwidth

4-Word Burst for reducing address bus frequency 

Double Data Rate (DDR) interfaces on both read and write ports 
(data transferred at 750 MHz) at 375 MHz 

Read latency of 2.0 clock cycles 

Two input clocks (K and K) for precise DDR timing

SRAM uses rising edges only

Echo clocks (CQ and CQ) simplify data capture in high speed 
systems

Single multiplexed address input bus latches address inputs 
for both read and write ports

Separate Port Selects for depth expansion

Data valid pin (QVLD) to indicate valid data on the output

Synchronous internally self-timed writes

Available in x8, x9, x18, and x36 configurations

Full data coherency providing most current data

Core V

DD

 = 1.8V ± 0.1V; IO V

DDQ

 = 1.4V to V

DD

[1]

Available in 165-Ball FBGA package (13 x 15 x 1.4 mm)

Offered in both Pb-free and non Pb-free packages

Variable drive HSTL output buffers

JTAG 1149.1 compatible test access port

Delay Lock Loop (DLL) for accurate data placement

Configurations

With Read Cycle Latency of 2.0 cycles:

CY7C1141V18 – 2M x 8
CY7C1156V18 – 2M x 9
CY7C1143V18 – 1M x 18
CY7C1145V18 – 512K x 36

Functional Description

The CY7C1141V18, CY7C1156V18, CY7C1143V18, and
CY7C1145V18 are 1.8V Synchronous Pipelined SRAMs,
equipped with QDR™-II+ architecture. QDR-II+ architecture
consists of two separate ports to access the memory array. The
read port has dedicated data outputs to support read operations
and the write port has dedicated data inputs to support write
operations. QDR-II+ architecture has separate data inputs and
data outputs to completely eliminate the need to “turn-around”
the data bus required with common IO devices. Access to each
port is accomplished through a common address bus.
Addresses for read and write addresses are latched on alternate
rising edges of the input (K) clock. Accesses to the QDR-II+ read
and write ports are completely independent of one another. To
maximize data throughput, both read and write ports are
equipped with Double Data Rate (DDR) interfaces. Each
address location is associated with four 8-bit words
(CY7C1141V18), or 9-bit words (CY7C1156V18), or 18-bit words
(CY7C1143V18), or 36-bit words (CY7C1145V18) that burst
sequentially into or out of the device. Because data can be trans-
ferred into and out of the device on every rising edge of both input
clocks K and K, memory bandwidth is maximized while simpli-
fying system design by eliminating bus “turn-arounds”.

Depth expansion is accomplished with Port Selects for each port.
Port Selects enable each port to operate independently.

All synchronous inputs pass through input registers controlled by
the K or K input clocks. All data outputs pass through output
registers controlled by the K or K input clocks. Writes are
conducted with on-chip synchronous self-timed write circuitry.

Selection Guide

Description

375 MHz

333 MHz

300 MHz

Unit

Maximum Operating Frequency 

375

333

300

MHz

Maximum Operating Current 

1020

920

850

mA

Note

1. The QDR consortium specification for V

DDQ

 is 1.5V + 0.1V. The Cypress QDR devices exceed the QDR consortium specification and are capable of supporting V

DDQ

 

= 1.4V to V

DD

.

[+] Feedback 

[+] Feedback 

Содержание CY7C1141V18

Страница 1: ...of two separate ports to access the memory array The read port has dedicated data outputs to support read operations and the write port has dedicated data inputs to support write operations QDR II ar...

Страница 2: ...Reg Reg Reg 16 19 8 32 8 NWS 1 0 VREF Write Add Decode Write Reg 16 A 18 0 19 512K x 8 Array 512K x 8 Array 512K x 8 Array Write Reg Write Reg Write Reg 8 CQ CQ DOFF QVLD 512K x 9 Array CLK A 18 0 Gen...

Страница 3: ...Reg 36 18 18 72 18 BWS 1 0 VREF Write Add Decode Write Reg 36 A 17 0 18 256K x 18 Array 256K x 18 Array 256K x 18 Array Write Reg Write Reg Write Reg 18 CQ CQ DOFF QVLD 128K x 36 Array CLK A 16 0 Gen...

Страница 4: ...C VSS NC Q2 NC NC NC VREF NC NC VDDQ NC VDDQ NC NC VDDQ VDDQ VDDQ D1 VDDQ NC Q1 NC VDDQ VDDQ NC VSS NC D0 NC TDI TMS VSS A NC A NC D2 NC ZQ NC Q0 NC NC NC NC A NC 144M CY7C1156V18 2M x 9 2 3 4 5 6 7 1...

Страница 5: ...5 NC NC VREF NC Q3 VDDQ NC VDDQ NC Q5 VDDQ VDDQ VDDQ D4 VDDQ NC Q4 NC VDDQ VDDQ NC VSS NC D2 NC TDI TMS VSS A NC A D7 D6 NC ZQ D3 Q2 D1 Q1 D0 NC A NC CY7C1145V18 512K x 36 2 3 4 5 6 7 1 A B C D E F G...

Страница 6: ...nd write operations Internally the device is organized as 2M x 8 4 arrays each of 512K x 8 for CY7C1141V18 2M x 9 4 arrays each of 512K x 9 for CY7C1156V18 1M x 18 4 arrays each of 256K x 18 for CY7C1...

Страница 7: ...m those listed in this data sheet For normal operation connect this pin to a pull up through a 10 K or less pull up resistor The device behaves in QDR I mode when the DLL is turned off In this mode op...

Страница 8: ...rising edge of the Positive Input Clock K This enables for a seamless transition between devices without the insertion of wait states in a depth expanded memory Write Operations Write operations are i...

Страница 9: ...ks are generated by the QDR II CQ is referenced with respect to K and CQ is refer enced with respect to K These are free running clocks and are synchronized to the input clock of the QDR II The timing...

Страница 10: ...R CLKIN CLKIN D A K SRAM 4 RQ 250ohms ZQ CQ CQ Q K RPS WPS BWS D A K SRAM 1 RQ 250ohms ZQ CQ CQ Q K RPS WPS BWS RPS WPS BWS R 50ohms Vt V 2 DDQ R Notes 2 X Don t Care H Logic HIGH L Logic LOW represen...

Страница 11: ...CY7C1141V18 only the upper nibble D 7 4 is written into the device D 3 0 remains unaltered CY7C1143V18 only the upper byte D 17 9 is written into the device D 8 0 remains unaltered H L L H During the...

Страница 12: ...is written into the device D 8 0 and D 35 18 remains unaltered H L H H L H During the data portion of a write sequence only the byte D 17 9 is written into the device D 8 0 and D 35 18 remains unalter...

Страница 13: ...falling edge of TCK Instruction Register Serially load three bit instructions into the instruction register This register is loaded when it is placed between the TDI and TDO pins as shown in TAP Cont...

Страница 14: ...oundary scan register After the data is captured it is possible to shift out the data by putting the TAP into the Shift DR state This places the boundary scan register between the TDI and TDO pins PRE...

Страница 15: ...gram 11 TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR SELECT IR SCAN CAPTURE IR SHIFT IR EXIT1 IR PAUSE IR EXIT2 IR UPDATE IR 1 0 1 1 0 1 0 1...

Страница 16: ...ut LOW Voltage IOL 100 A 0 2 V VIH Input HIGH Voltage 0 65 VDD VDD 0 3 V VIL Input LOW Voltage 0 3 0 35 VDD V IX Input and Output Load Current GND VI VDD 5 5 A 0 0 1 2 29 30 31 Boundary Scan Register...

Страница 17: ...Hold after Clock Rise 5 ns tCH Capture Hold after Clock Rise 5 ns Output Times tTDOV TCK Clock LOW to TDO Valid 10 ns tTDOX TCK Clock LOW to TDO Invalid 0 ns TAP Timing and Test Condition The Tap Tim...

Страница 18: ...Instruction Code Description EXTEST 000 Captures the input and output ring contents IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and TDO This operation...

Страница 19: ...2K 7 8P 34 11E 61 4B 88 1K 8 9R 35 10E 62 3A 89 2L 9 11P 36 10D 63 1H 90 3L 10 10P 37 9E 64 1A 91 1M 11 10N 38 10C 65 2B 92 1L 12 9P 39 11D 66 3B 93 3N 13 10M 40 9C 67 1C 94 3M 14 11N 41 9D 68 1B 95 1...

Страница 20: ...power and clock K K for 2048 cycles to lock the DLL DLL Constraints DLL uses K clock as its synchronizing input The input must have low phase jitter which is specified as tKC Var The DLL functions at...

Страница 21: ...l Impedance VDDQ 0 2 VDDQ V VOL LOW Output LOW Voltage IOL 0 1 mA Nominal Impedance VSS 0 2 V VIH Input HIGH Voltage VREF 0 1 VDDQ 0 15 V VIL Input LOW Voltage 0 15 VREF 0 1 V IX Input Leakage Current...

Страница 22: ...ient Test conditions follow standard test methods and procedures for measuring thermal impedance in accordance with EIA JESD51 13 48 C W JC Thermal Resistance junction to case 4 15 C W AC Test Loads a...

Страница 23: ...0 2 0 2 0 2 ns tCQDOH tCQHQX Echo Clock High to Data Invalid 0 2 0 2 0 2 ns tCQH tCQHCQL Output Clock CQ CQ HIGH 25 0 88 1 03 1 15 ns tCQHCQH tCQHCQH CQ Clock Rise to CQ Clock Rise 25 rising edge to...

Страница 24: ...D A WPS RPS K K DON T CARE UNDEFINED CQ CQ tCQOH CCQO t tCQOH CCQO t tQVLD QVLD tQVLD Read Latency 2 0 Cycles CLZ t t CO tDOH tCQDOH CQD t tCHZ Q00 Q01 Q20 Q02 Q21 Q03 Q22 Q23 tCQH tCQHCQH Q Notes 30...

Страница 25: ...Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm Industrial CY7C1156V18 375BZI CY7C1143V18 375BZI CY7C1145V18 375BZI CY7C1141V18 375BZXI 51 85180 165 Ball Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm Pb Fr...

Страница 26: ...18 300BZXC CY7C1141V18 300BZI 51 85180 165 Ball Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm Industrial CY7C1156V18 300BZI CY7C1143V18 300BZI CY7C1145V18 300BZI CY7C1141V18 300BZXI 51 85180 165 Ball Fi...

Страница 27: ...5 M C B A 0 15 4X 0 35 0 06 SEATING PLANE 0 53 0 05 0 25 C 0 15 C PIN 1 CORNER TOP VIEW BOTTOM VIEW 2 3 4 5 6 7 8 9 10 10 00 14 00 B C D E F G H J K L M N 11 11 10 9 8 6 7 5 4 3 2 1 P R P R K M N L J...

Страница 28: ...LIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE Cypress reserves the right to make changes without further notice to the materials described herein Cypress does not assume any...

Отзывы: