1. Access the Initial Setup mode by pressing and holding the
;
button for three seconds. Press the
'
button repeatedly until the parameter
Ctrl
appears. Use the
,
and
.
buttons to select
onof
for ON
/ OFF control and press the
;
button to save the selected value. Press the
'
button to access the param-
eter
s-hC
. Use the
.
button to select
h2C1
for controlling a cooling / heating loop. This parameter sets
the cooling control to output #1 and the heating control to output #2. Press the
;
button twice to save the
value and return to the controller main screen.
2. Press the
'
button to access the parameter
r-s
. Verify that the default value
run
is selected. Press
the
;
button to return to the controller main screen.
3. Press the
;
button for less than three seconds to access the
parameter
hts
. Use the
,
and
.
buttons to enter hysteresis
for output #2, the heating control. This is the amount the PV must go
below the SV before the controller output turns on. Press the
;
button to save the selected value. Press the
'
button to access the
parameter
Cts
. Use the
,
and
.
buttons to enter hysteresis
for output #1, the cooling control. This is the amount the PV must go
above the SV before the controller output turns on. Press the
;
button twice to save the selected value and return to the controller
main screen.
4. Optional regulation parameters can be programmed for additional dual loop control. If this is desired, access
the regulation mode again by pressing the
;
button for less than three seconds. Press the
'
button
repeatedly until the parameter
dead
appears. Use the
,
and
.
buttons to enter a deadband zone value
around the setpoint where the output is not on. The PV must go beyond the deadband range in order for either
the heating or cooling output to turn on. Press the
;
button twice to save the selected value and return to the
controller main screen.
Dual Cooling / Heating Loop with ON / OFF Control
12-9
OFF
PV
Set point
ON
Heating
Dead band
Heating hysteresis
Cooling hysteresis
Cooling
hts
Cts
dead
Dual loop ON / OFF control
output operation
Manual Control
1. Access the Initial Setup mode by pressing and holding the
;
button for three seconds. Press the
'
button repeatedly until the parameter
Ctrl
appears. Use the
,
and
.
buttons to select
manu
for
manual control. Press the
;
button twice to save the selected value and return to the controller main screen.
2. Press the
'
button to access the parameter
out1
. Use the
,
and
.
buttons to set a value
between
)0
and
10)0
to control output #1 directly. If the controller has a discrete output, a value of
2)0
turns the output on 20% of the time. A value of
10)0
would turn the output on 100% of the time. A manually
controlled analog output value is a percentage of the analog signal. For example, if the controller has a 4-20mA
current output, a setting of
)0
would mean that the output would be 4mA. The output would be 20mA with a
setting of
10)0
. Both types of manually controlled outputs are off with a value of
00
. Press the
;
button
to save the selected value. For dual output control, press the
'
button to access the parameter
out2
. Use
the
,
and
.
buttons to set a value between
)0
and
10)0
to control output #2 directly. Press the
;
button twice to save the selected value and return to the controller main screen.
12-11
Dual Cooling / Heating Loop with PID Control
1. Access the Initial Setup mode by pressing and holding the
;
button for three seconds. Press the
'
button repeatedly until the parameter
Ctrl
appears. Confirm the default value
Pid
is selected for PID
control. Press the
'
button to access the parameter
s-hC
. Use the
.
button to select
h2C1
for
controlling a dual cooling / heating loop. This parameter sets the cooling control to output #1 and the heating
control to output #2. Press the
;
button twice to save the value and return to the controller main screen.
2. Press the
'
button to access the parameter
r-s
. Verify that the default value
run
is selected. Press
the
;
button to return to the controller main screen.
3. Refer to Section 12-1 of this Quick Start Guide to set up the PID control parameters.
4. If the temperature controller’s output #1 is discrete, access the regulation mode again by pressing the
;
button for less than three seconds. Press the
'
button repeatedly until the parameter
Clpd
appears. Use
the
,
and
.
buttons to set the time period in seconds for the cooling output. Press the
;
button to save
the value. If the temperature controller’s output #2 is discrete, press the
'
button repeatedly until the param-
eter
hCpd
appears. Use the
,
and
.
buttons to enter the cycle period for output #2, the heating output.
Press the
;
button twice to save the value and return to the controller main screen.
5. Optional regulation parameters can be programmed for additional dual
loop control. If this is desired, access the regulation mode again by
pressing the
;
button for less than three seconds. Press the
'
button repeatedly until the parameter
Coef
appears. This value allows
the heating control to have a different proportional setting than the cooling
loop. The cooling loop proportional band setting is multiplied by the
Coef
value to create a proportional band setting for the heating loop
control. Use the
,
and
.
buttons to change this value if desired.
Press the
;
button to save the selected value. Press the
'
button to
access the parameter
dead
. Use the
,
and
.
buttons to enter a
deadband zone value around the setpoint where the output is not effected
by the proportional control value. As long as the PV remains within the
deadband zone the output is not affected by the proportional control. The
integral and derivative controls ignore the deadband setting and may
cause the output to be on within the deadband zone. Press the
;
button
twice to save the value and return to the controller main screen.
12-8
PV
0
Output
Dead band: dead
band width=positive
Set point
Heating
Cooling
dead
PV
0
Output
Dead band: dead
band width=negative
Set point
Heating
Cooling
dead
Dual loop PID control
positive deadband
Dual loop PID control
negative deadband
Alarm Output
Note: ALnH represents AL1H. ALnL represents AL1L.
13
Ramp / Soak Control
1. Access the Initial Setup mode by pressing and holding the
;
button for three seconds. Press the
'
button repeatedly until the parameter
Ctrl
appears. Use the
,
and
.
buttons to select
pro6
for
Ramp / Soak control. Press the
;
button to save the selected value. Press the
'
button to access the
parameter
Patn
. Eight different Ramp / Soak patterns are possible with the Solo Temperature Controller. Use
the
,
and
.
buttons to select pattern number 0 through 7 for programming. Press the
;
button to save
the selected value.
2. The chart below illustrates an example of a seven step Ramp / Soak pattern (Pattern 0). Press the
'
button
to access the parameter
SP00
. Use the
,
and
.
buttons to select a setting value temperature for step
00 and press the
;
button to save the value. Press the
'
button to access the parameter
ti00
. Use the
,
and
.
buttons to enter a time in hours / minutes for step 00. Follow this procedure until the desired
number of temperature and time parameters are completed. Press the
'
button to access the parameter
psx0
. Use the
,
and
.
buttons to select the last step to be completed by the Ramp /Soak pattern. For
example, if
psx0
is set to
4
, steps 00 through 04 will be executed in the pattern.
3. Press the
'
button to access the parameter
CYC0
. Use the
,
and
.
buttons to select the number
of additional times the Ramp / Soak pattern will be executed. For example, if
CyC0
is set to
3
, the Ramp /
Soak pattern will execute a total of four times. Press the
;
button to save the selected value. Press the
'
button to access the parameter
lin0
. Use the
,
and
.
buttons to choose a Ramp / Soak pattern to
execute after the completion of Pattern 0. If set to
off
, the temperature of the last step in Pattern 0 will be held.
Press the
;
button twice to save the selected value and return to the controller main screen.
100
°
70
°
50
°
30
°
Ramp
03.00
02.00
08.00
Soak
POS0 POS1
POS2
POS3
POS4
POS5
POS6
05.00
03.00
05.00
03.00
Step00 = 50°
Time00 = 3 hrs 00 min.
Step01 = 70°
Time01 = 2 hrs 00 min.
Step02 = 70°
Time02 = 5 hrs 00 min.
SP00
ti00
SP01
ti01
SP02
ti02
Step03 = 100°
Time03 = 3 hrs 00 min.
Step04 = 100°
Time04 = 8 hrs 00 min.
Step05 = 30°
Time05 = 5 hrs 00 min.
SP03
ti03
SP04
ti04
SP05
ti05
Step06 = 30°
Time06 = 3 hrs 00 min.
Process Step = 6
Cycle times = 0
Link = OFF
SP06
ti06
psx0
CyCO
lin0
12-10
Set Value
Alarm Type
Alarm Output Operation
0
Alarm function disabled
Output is OFF
1
Deviation upper and lower limit:
This alarm output activates when the PV value is higher than the setting value
SV + ALnH or lower than the setting value SV - ALnL.
ON
OFF
SV - ALnL
SV
SV + ALnH
2
Deviation upper-limit:
This alarm output activates when the PV value is higher than the setting value
SV + ALnH.
ON
OFF
SV
SV+ALnH
3
Deviation lower limit:
This alarm output activates when the PV value is lower than the setting value
SV - ALnL.
ON
OFF
SV
SV - ALnL
4
Reverse deviation upper and lower limit:
This alarm output activates when the PV value is in the range of the setting value
SV+ ALnH and the setting value SV - ALnL.
ON
OFF
SV
SV - ALnL
SV + ALnH
5
Absolute value upper and lower limit:
This alarm output activates when the PV value is higher than the setting value ALnH
or lower than the setting value ALnL.
ON
OFF
ALnL
ALnH
6
Absolute value upper-limit:
This alarm output activates when the PV value is higher than the setting value ALnH
ON
OFF
ALnH
7
Absolute value lower limit:
This alarm output activates when the PV value is lower than the setting value ALnL
ON
OFF
ALnL
8
Deviation upper and lower limit with standby sequence:
This alarm output activates when the PV value reaches the set point (SV value) and
the reached value is higher than the setting value SV + ALnH or lower than the setting
value SV - ALnL.
ON
OFF
SV
SV - ALnL
SV + ALnH
9
Deviation upper limit with standby sequence:
This alarm output activates when the PV value reaches the set point (SV value) and
the reached value is higher than the setting value SV+ ALnH.
SV + ALnH
ON
OFF
SV
10
Deviation lower limit with standby sequence:
This alarm output activates when the PV value reaches the set point (SV value) and
the reached value is lower than the setting value SV - ALnL.
SV - ALnL
ON
OFF
SV
11
Hysteresis upper-limit alarm output:
This alarm output activates when the PV value is higher than the setting value
SV + ALnH. This alarm output is OFF when the PV value is lower than the setting
value SV + ALnL.
ON
OFF
SV + ALnL
SV
SV + ALnH
12
Hysteresis lower-limit alarm output:
This alarm output activates when the PV value is lower than the setting value
SV- ALnH. This alarm output is OFF when the PV value is higher than the setting
value SV - ALnL.
ON
OFF
SV - ALnH
SV
SV - ALnL
13
N/A
Ramp / Soak Program Alarms
14
This alarm activates when the Ramp / Soak program has ended.
15
This alarm activates while the program is in RAMP UP status.
16
This alarm activates while the program is in RAMP DOWN status.
17
This alarm activates while the program is in SOAK status.
18
This alarm activates while the program is in RUN status.
Error Display Information
14
The chart below shows the possible error displays on the Solo temperature controller.
Controller Error Display
Display Position
Display
Meaning
Cause
Corrective Action
PV
b160
Cr
Initialization
PV = Firmware version
SV = Module type
The controller is in
the initialization
process.
The Solo controller displays this information for a few sec-
onds after power up. If the controller continues
displaying this information, check the input wiring. If the
problem still exists, replace the sensor or the controller.
SV
PV
no
Cont
No sensor input
The input terminals
are open.
Check the input wiring. If the problem still exists, replace the
sensor or the controller.
SV
PV
Err
Inpt
Input error
The controller cannot
read the input value
Check the sensor and the input wiring. If the problem still
exists, replace the sensor or the controller.
SV
PV
Err
Prom
EEPROM error
There is an error with
the EEPROM
Cycle the power to the Solo controller. If the problem still
exists, replace the controller.
SV
PV
Flashing PV
PV out of range
The PV is out of
range
Check the PV range. The parameters
tp-h
and
tp-l
define the range. Refer to section 12-1, 12-2 or 12-3 for
directions on how to access these parameters.
SV
The SL4824 series temperature controller has one alarm output, ALA1. Alarm group ALA1 can be programmed
for one of seventeen different alarm types. To set up the alarm output, press the
;
button for three seconds.
Press the
'
button repeatedly until the parameter
ALA1
appears. Use the
.
button to choose the set
value for the desired alarm type. Refer to the chart below for alarm type information. Press the
;
button to
save the selected value. Press the
;
button repeatedly until the controller returns to the main screen.
The alarm output limits are controlled by the parameters
Al
n
h
and
Al
n
l
, where “n” corresponds to the alarm
output group chosen. After setting the alarm type for ALA1, press the
'
button repeatedly until the parameter
Al
n
h
and/or
Al
n
l
appears. Use the
.
and
,
buttons to enter the high and/or low values for alarm
group ALA1. Press the
;
button to save each selected value. Press the
;
button again to return to the
controller main screen.
ALA1 is a SPST resistive load 3A @ 250 VAC, normally open relay output.
All manuals and user guides at all-guides.com