30
7679H–CAN–08/08
AT90CAN32/64/128
address actually is driven on the bus. The access time cannot exceed the time from the ALE
pulse must be asserted low until data is stable during a read sequence (see t
LLRL
+ t
RLRH
- t
DVRH
in
through
). The different wait-states are set up in software. As an addi-
tional feature, it is possible to divide the external memory space in two sectors with individual
wait-state settings. This makes it possible to connect two different memory devices with different
timing requirements to the same XMEM interface. For XMEM interface timing details, please
refer to
through
and
in the
Memory Characteristics” on page 375
.
Note that the XMEM interface is asynchronous and that the waveforms in the following figures
are related to the internal system clock. The skew between the internal and external clock
(XTAL1) is not guarantied (varies between devices temperature, and supply voltage). Conse-
quently, the XMEM interface is not suited for synchronous operation.
Figure 4-6.
External Data Memory Cycles no Wait-state (SRWn1=0 and SRWn0=0)
Note:
1. SRWn1 = SRW11 (upper sector) or SRW01 (lower sector), SRWn0 = SRW10 (upper sector) or
SRW00 (lower sector). The ALE pulse in period T4 is only present if the next instruction
accesses the RAM (internal or external).
Figure 4-7.
External Data Memory Cycles with SRWn1 = 0 and SRWn0 = 1
ALE
T1
T2
T3
W
rite
Read
WR
T4
A15:8
Address
Prev. addr.
DA7:0
Address
Data
Prev. data
XX
RD
DA7:0 (XMBK = 0)
Data
Prev. data
Address
Data
Prev. data
Address
DA7:0 (XMBK = 1)
System Clock (CLK
CPU
)
XXXXX
XXXXXXXX
ALE
T1
T2
T3
W
rite
Read
WR
T5
A15:8
Address
Prev. addr.
DA7:0
Address
Data
Prev. data
XX
RD
DA7:0 (XMBK = 0)
Data
Prev. data
Address
Data
Prev. data
Address
DA7:0 (XMBK = 1)
System Clock (CLK
CPU
)
T4
Содержание AVR AT90CAN128
Страница 414: ...414 7679H CAN 08 08 AT90CAN32 64 128 32 2 QFN64...
Страница 415: ...415 7679H CAN 08 08 AT90CAN32 64 128...