background image

Evaluation Board User Guide 

UG-001

 

Rev. 0 | Page 5 of 24 

DEFAULT OPERATION AND 
JUMPER SELECTION SETTINGS 

This section explains the default and optional settings or modes 
allowed on the AD9272/AD9273 Rev. A evaluation board. 

Power Circuitry 

Connect the switching power supply that is supplied in the 
evaluation kit between a rated 100 V ac to 240 V ac wall outlet 
at 47 Hz to 63 Hz and P701. 

Analog Input Front-End Circuit 

The evaluation board is set up for a transformer-coupled analog 
input with an optimum 50 Ω impedance match of 18 MHz of 
bandwidth. For a different bandwidth response, use the 
antialiasing filter settings. 

VREF 

VREF is set to 1.0 V. This causes the ADC to operate with the 
internal reference in the 2.0 V p-p full-scale range. A separate 
external reference option using the ADR130 is also included on 
the evaluation board. Populate R311 with a 0 Ω resistor and remove 
C426. Note that ADC full-scale ranges less than 2.0 V p-p are 
not supported by the AD9272/AD9273. 

RBIAS 

RBIAS has a default setting of 10 kΩ (R301) to ground and is used 
to set the ADC core bias current. However, note that using other 
than a 10 kΩ, 1% resistor for RBIAS may degrade the performance 
of the device, depending on the resistor chosen. 

Clock Circuitry 

The default clock input circuitry is derived from a sim- 
ple transformer-coupled circuit using a high bandwidth 
1:1 impedance ratio transformer (T401) that adds a very low 
amount of jitter to the clock path. The clock input is 50 Ω 
terminated and ac-coupled to handle single-ended sine wave 
types of inputs. The transformer converts the single-ended 
input to a differential signal that is clipped before entering the 
ADC clock inputs.  

The evaluation board is already set up to be clocked from the 
crystal oscillator, OSC401. This oscillator is a low phase noise 
oscillator from Valpey Fisher (VFAC3-BHL-50MHz/VFAC3-
BHL-65MHz/VFAC3-BHL-80MHz). If a different clock source 
is desired, remove R403, set Jumper J401 to disable the oscillator 
from running, and connect the external clock source to the 
SMA connector, P401. 

A differential LVPECL clock driver can also be used to clock the 
ADC input using the 

AD9515

 (U401). Populate R406 and R407 

with 0 Ω resistors and remove R415 and R416 to disconnect the 
default clock path inputs. In addition, populate C405 and C406 
with a 0.1 μF capacitor and remove C409 and C410 to disconnect 
the default clock path outputs. The AD9515 has many pin-
strappable options that are set to a default mode of operation. 
Consult the AD9515 data sheet for more information about 
these and other options. 

PDWN 

To enable the power-down feature, short P303 to the on 
position (AVDD) on the PDWN pin. 

STBY 

To enable the standby feature, short P302 to the on position 
(AVDD) on the STBY pin. 

GAIN+, GAIN− 

To change the VGA attenuation, drive the GAIN+ pin from 0 V 
to 1.6 V on J302 using a linear supply and use a single-ended 
method to change the VGA gain from 0 dB to 42 dB. U403 is 
available for users who wish to drive the gain pins (GAIN±) 
differentially. Install R305, R347, and R349 and remove C308, 
C309, and R303 to connect the amplifier correctly. Next, apply a 
dc voltage source to P601, connecting the +5 V, −5 V, and ground 
(0 V) appropriately to bias U403 (AD8138). These benchtop 
linear supplies should each have 100 mA of current capability.  

If an external source is not available, R337 can be installed to 
use the on-board resistive divider for gain adjustment in either 
the single-ended or differential case. 

Non-SPI Mode 

For users who wish to operate the DUT without using SPI, 
remove the jumpers on J601. This disconnects the CSB, SCLK, 
and SDIO pins from the control bus, allowing the DUT to 
operate in its simplest mode. Each of these pins has internal 
termination and will float to its respective level. Note that the 
device will only work in its default condition. 

CWDx+, CWDx− 

To use the CWDx± outputs, first apply a dc voltage source to 
P601, connecting the +5 V, −5 V, and ground (0 V) appropriately to 
bias U402 (AD812). These benchtop linear supplies should each 
have 100 mA of current capability.  

To view the CWD2+/CWD2− through CWD5+/CWD5− outputs, 
jumper together the appropriate outputs on P606 and P607. All 
outputs are summed together on the IOP and ION buses, fed to 
a 1:4 impedance ratio transformer, and buffered so that the user 
can view the output on a spectrum analyzer. This can be configured 
to be viewed in single-ended mode (default) or in differential mode 
by using a spectrum analyzer. To set the voltage for the appropriate 
number of channels to be summed, change the value of R447 
and R448 on the primary transformer (T402). 

Upon shipment, the CWD0+/CWD0−, CWD1+/CWD1−, 
CWD6+/CWD6−, and CWD7+/CWD7− outputs are properly 
biased and ready to use with the 

AD8339

 quad I/Q demodulator 

and phase shifter. The AD9272/AD9273 evaluation board simply 
snaps into place on the AD8339 evaluation board (AD8339-
EVALZ). Remove the jumpers connected to P3A and P4A on 
the AD8339 evaluation board, and snap the standoffs that are 
provided with the AD9272/AD9273 into the AD8339 evaluation 
board standoff holes in the center of the board. The standoffs 
will automatically lock into place and create a direct connection 

Содержание AD9272

Страница 1: ...c voltage source 5V w 100 mA each DOCUMENTS NEEDED AD9272 and AD9273 data sheets HSC ADC EVALCZ data sheet High Speed Converter Evaluation Platform FPGA based data capture kit AN 905 Application Note...

Страница 2: ...rdware 3 Power Supplies 3 Input Signals 3 Output Signals 3 Default Operation and Jumper Selection Settings 5 Evaluation Board Software Quick Start Procedures 7 Configuring the Board 7 Using the Softwa...

Страница 3: ...urrent capability for AVDD_DUT and DRVDD_DUT however it is recommended that separate supplies be used for both analog and digital domains An additional supply is also required to supply 3 0 V to the d...

Страница 4: ...AC 47Hz TO 63Hz 07782 070 ANALOG INPUT SIGNAL SYNTHESIZER SIGNAL SYNTHESIZER OPTIONAL CLOCK SOURCE SPECTRUM ANALYZER CW OUTPUT AGILENT POWER SUPPLY GAIN CONTROL INPUT PC RUNNING ADC ANALYZER OR VISUAL...

Страница 5: ...peration Consult the AD9515 data sheet for more information about these and other options PDWN To enable the power down feature short P303 to the on position AVDD on the PDWN pin STBY To enable the st...

Страница 6: ...tween the AD9272 AD9273 CWDx outputs and the AD8339 inputs DOUTx DOUTx If an alternative data capture method to the setup described in Figure 2 is used optional receiver terminations R701 to R710 can...

Страница 7: ...ed RG 58 50 coaxial cable to connect the signal generator For best results use a narrow band band pass filter with 50 terminations and an appropriate center frequency Analog Devices uses TTE Allen Avi...

Страница 8: ...he drawback is that each FFT display is only 8k points Exit the ADC Data Capture Settings box by clicking OK Setting Up the SPI Controller After the ADC data capture board setup is completed set up th...

Страница 9: ...re 11 SPI Controller HIGHPASS 2B Box 5 In the ADC A tab of SPI Controller find the OFFSET 10 box Use the drop down box labeled Offset Adj to perform an offset correction to the LNA if the LNA power se...

Страница 10: ...examine the spectrum of the CW Doppler integrated crosspoint switch output use the following procedure 1 Complete the steps in the Configuring the Board and Using the Software for Testing sections to...

Страница 11: ...60 70 80 90 100 0 2 07782 004 FREQUENCY MHz AMPLITUDE dBm 5 10 15 20 5 FREQUENCY 2 3MHz CWD1 DIFFERENTIAL OUTPUT Figure 20 Typical Spectrum Analyzer Display of CWD Output Figure 18 SPI Controller MODE...

Страница 12: ...UG 001 Evaluation Board User Guide Rev 0 Page 12 of 24 EVALUATION BOARD SCHEMATICS AND ARTWORK 07782 005 Figure 21 Evaluation Board Schematic DUT Analog Input Circuits...

Страница 13: ...Evaluation Board User Guide UG 001 Rev 0 Page 13 of 24 07782 006 Figure 22 Evaluation Board Schematic DUT Analog Input Circuits Continued...

Страница 14: ...UG 001 Evaluation Board User Guide Rev 0 Page 14 of 24 07782 007 Figure 23 Evaluation Board Schematic DUT VREF and Decoupling...

Страница 15: ...Evaluation Board User Guide UG 001 Rev 0 Page 15 of 24 07782 008 Figure 24 Evaluation Board Schematic Clock SPI and Gain Circuits...

Страница 16: ...UG 001 Evaluation Board User Guide Rev 0 Page 16 of 24 07782 009 Figure 25 Evaluation Board Schematic Power Supply CW Doppler Digital Output Interface...

Страница 17: ...Evaluation Board User Guide UG 001 Rev 0 Page 17 of 24 07782 010 Figure 26 Evaluation Board Layout Top Side...

Страница 18: ...UG 001 Evaluation Board User Guide Rev 0 Page 18 of 24 07782 011 Figure 27 Evaluation Board Layout Ground Plane Layer 2...

Страница 19: ...Evaluation Board User Guide UG 001 Rev 0 Page 19 of 24 07782 012 Figure 28 Evaluation Board Layout Power Plane Layer 3...

Страница 20: ...UG 001 Evaluation Board User Guide Rev 0 Page 20 of 24 07782 013 Figure 29 Evaluation Board Layout Power Plane Layer 4...

Страница 21: ...Evaluation Board User Guide UG 001 Rev 0 Page 21 of 24 07782 014 Figure 30 Evaluation Board Layout Ground Plane Layer 5...

Страница 22: ...UG 001 Evaluation Board User Guide Rev 0 Page 22 of 24 07782 015 Figure 31 Evaluation Board Layout Bottom Side...

Страница 23: ...end launch coaxial Samtec SMA J P H ST EM1 14 2 P302 P303 Header 2 pin single row male 100 mil straight Samtec TSW 102 07 G S 15 3 J601 P606 P607 Conn PCB header 8 pin double row Samtec TSW 104 07 G...

Страница 24: ...r high accuracy 1 8 V SOT 223 Analog Devices ADP3339AKCZ 1 8 R7 51 1 U705 IC regulator high accuracy 3 3 V SOT 223 Analog Devices ADP3339AKCZ 3 3 R7 52 1 U706 IC regulator high accuracy 3 0 V SOT 223...

Отзывы: