Analog Devices AD604 Скачать руководство пользователя страница 19

 

AD604

 

Rev. E | Page 19 of 32 

VG

13

16

15

14

19

18

17

24

23

22

21

20

12

11

10

9

8

1

2

3

4

7

6

5

AD604

–5V

+5V

VREF

RF OUT

–5V

+5V

8

7

6

5

1

2

3

4

AD711

NC

OUT

AD835

+5V

–5V

–5V

+5V

2

VSET (<0V)

–DSX1

+DSX1

PAI1

FBK1

PAO1

COM1

COM2

PAI2

FBK2

PAO2

+DSX2

–DSX2

VGN1

VREF

VPOS

GND1

OUT1

VNEG

VNEG

VPOS

GND2

OUT2

VOCM

VGN2

FB

FB

+5V

–5V

ALL SUPPLY PINS ARE DECOUPLED AS SHOWN.

1V

OFFS

NULL

C1

0.1µF

C2

0.1µF

VIN

(MAX

800mV p-p)

R1

49.9

C3

0.1µF

C4

0.1µF

C7

0.1µF

C6

0.56µF

R2

453

R3

1k

C7

0.33µF

V1 = V

IN

× G

R4

2k

C8

0.33µF

8

7

6

5

1

2

3

4

C9

0.33µF

R5

2k

R6

2k

– (A)

2

IF V1 = A × cos (wt)

Y1

Y2

VN

Z

X1

X2

VP

W

– (V1)

2

LOW-

PASS

FILTER

R7

1k

C10

1µF

C11

1µF

R8

2k

+V

S

–V

S

OFFS

NULL

C12

0.1µF

C13

0.1µF

00

54

0-

04

4

 

Figure 44. AGC Amplifier with 82 dB of Gain Range 

 

ULTRALOW NOISE AGC AMPLIFIER WITH 82 dB TO 
96 dB GAIN RANGE 

Figure 44 shows an implementation of an AGC amplifier with 
82 dB of gain range using a single AD604. The signal is applied 
to connector VIN and, because the signal source is 50 Ω, a 
terminating resistor (R1) of 49.9 Ω is added. The signal is then 
amplified by 14 dB (Pin FBK1 shorted to PAO1) through the 
Channel 1 preamplifier and is further processed by the Channel 1 
DSX. Next, the signal is applied directly to the Channel 2 DSX. The 
second preamplifier is powered down by connecting its COM2 pin 
to the positive supply as explained in the Preamplifier section.  

C1 and C2 level shift the signal from the preamplifier into the 
first DSX and, at the same time, eliminate any offset contribution 
of the preamplifier. C3 and C4 have the same offset cancellation 
purpose for the second DSX. Each set of capacitors, combined 
with the 175 Ω input resistance of the corresponding DSX, 
provides a high-pass filter with a −3 dB corner frequency of 
about 9.1 kHz. VOCM is decoupled to ground by a 0.1 μF 
capacitor, while VREF can be externally provided; in this 
application, the gain scale is set to 20 dB/V by applying 2.500 V. 
Because each DSX amplifier operates from a single 5 V supply, 
the output is ac-coupled via C6 and C7. The output signal can 
be monitored at the connector labeled RF OUT. 

 

 

 

 

Figure 45 anFigure 46 show the gain range and gain error for 
the AD604 connected as shown in Figure 44. The gain range is 
−14 dB to +82 dB; the useful range is 0 dB to +82 dB if the RF 
output amplitude is controlled to ±400 mV (+2 dBm). The main 
limitation on the lower end of the signal range is the input 
capability of  
the preamplifier. This limitation can be overcome by adding an 
attenuator in front of the preamplifier, but that would defeat the 
advantage of the ultralow noise preamplifier. It should be noted 
that the second preamplifier is not used because its ultralow 
noise and the associated high-power consumption are overkill 
after the first DSX stage. It is disabled in this application by 
connecting the COM2 pin to the positive supply. Nevertheless, 
the second preamplifier can be used, if so desired, and the 
useful gain range increases by 14 dB to encompass 0 dB to 
96 dB of gain. For the same +2 dBm output, this allows signals 
as small as −94 dBm to be measured. 

To achieve the highest gains, the input signal must be band-
limited to reduce the noise; this is especially true if the second 
preamplifier is used. If the maximum signal at OUT2 of the AD604 
is limited to ±400 mV (+2 dBm), the input signal level at the 
AGC threshold is +25 μV rms (−79 dBm). The circuit as shown in 
Figure 44 has about 40 MHz of noise bandwidth; the 0.8 nV/√Hz 
of input referred voltage noise spectral density of the AD604 
results in an rms noise of 5.05 μV in the 40 MHz bandwidth.  

www.BDTIC.com/ADI

Содержание AD604

Страница 1: ...annel of the AD604 provides a 300 k input resistance and unipolar gain control for ease of use User determined gain ranges gain scaling dB V and dc level shifting of output further optimize performanc...

Страница 2: ...8 Rev D to Rev E Changes to Figure 1 1 Changes to Figure 37 13 Changes to Figure 41 15 Changes to Evaluation Board Model Name 24 Changes to Ordering Guide 29 1 08 Rev C to Rev D Changes to AC Coupling...

Страница 3: ...Voltage Noise VGN 2 9 V 1 8 nV Hz Input Current Noise VGN 2 9 V 2 7 pA Hz Noise Figure RS 50 f 10 MHz VGN 2 9 V 8 4 dB RS 200 f 10 MHz VGN 2 9 V 12 dB Common Mode Rejection Ratio f 1 MHz VGN 2 65 V 2...

Страница 4: ...Gain Range Preamplifier gain 14 dB 0 to 48 dB Preamplifier gain 20 dB 6 to 54 dB Input Voltage VGN Range 20 dB V VREF 2 5 V 0 1 to 2 9 V Input Bias Current 0 4 A Input Resistance 2 M Response Time 48...

Страница 5: ...N 35 C W AD604AR 38 C W AD604ARS 34 C W 1 Pin 1 Pin 2 Pin 11 to Pin 14 Pin 23 and Pin 24 are part of a single supply circuit The part is likely to suffer damage if any of these pins are accidentally c...

Страница 6: ...is connected to positive supply Preamplifier 2 shuts down 8 PAI2 Channel 2 Preamplifier Positive Input 9 FBK2 Channel 2 Preamplifier Feedback Pin 10 PAO2 Channel 2 Preamplifier Output 11 DSX2 Channel...

Страница 7: ...4dB TO 34dB G PREAMP 14dB 0dB TO 48dB 00540 004 Figure 4 Gain vs VGN for Different Preamplifier Gains VGN V 10 50 20 40 30 10 0 GAIN dB 0 1 0 5 0 9 1 3 1 7 2 1 2 5 2 9 ACTUAL ACTUAL 20dB V VREF 2 5V 3...

Страница 8: ...LTA GAIN dB PERCENTAGE 25 20 15 10 5 0 1 0 0 8 0 6 0 4 0 2 0 1 0 3 0 5 0 7 0 9 N 50 VGN1 2 50V VGN2 2 50V G dB G CH1 G CH2 00540 011 Figure 11 Gain Match VGN1 VGN2 2 50 V VGN 2 9V VGN 2 5V VGN 1 5V VG...

Страница 9: ...e vs Temperature 770 745 760 765 750 755 VGN 2 9V 100k 1M 10M NOISE pV Hz 7 00540 01 Figure 17 Input Referred Noise vs Frequency RSOURCE 1 10 100 1k NOISE nV Hz RSOURCE ALONE 00540 018 NOISE FIGURE dB...

Страница 10: ...60 50 500 DUT RS RSOURCE 0 50 100 150 200 250 VO 1V p p VGN 1V HD3 10MHz HD2 1MHz HD3 1MHz HD2 10MHz 3 00540 02 FREQUENCY MHz 90 120 Figure 23 Harmonic Distortion vs RSOURCE VO 1V p p VGN 1V 30 80 100...

Страница 11: ...500mV Figure 29 Power Up Power Down Response 10 0 100 90 100ns 500mV 500mV 2 9V 0 1V VGN V 00540 030 FREQUENCY Hz CROSSTALK dB 30 10 20 40 50 60 0 70 Figure 30 Gain Response 100k 1M 10M 100M VGN2 0 1V...

Страница 12: ...90 00540 034 SUPPLY CURRENT mA 40 20 0 35 30 25 15 10 5 INPUT BIAS CURRENT A Figure 34 Input Bias Current vs Temperature PREAMP IS AD604 IS DSX IS IS VGN 0 IS AD604 IS PA IS DSX IS AD604 IS PA TEMPER...

Страница 13: ...reamp gain is set to 14 dB and VREF is set to 2 50 V to establish a gain scaling of 20 dB V the gain equation simplifies to G dB 20 dB V VGN V 5 dB The desired gain can then be achieved by setting the...

Страница 14: ...d is independent of gain To achieve optimum specifications power and ground manage ment are critical to the AD604 Large dynamic currents result because of the low resistances needed for the desired no...

Страница 15: ...ended but 350 when driven differentially This is easily explained by thinking of the ladder network as two 175 resistors connected back to back with the middle node MID being biased by the VOCM buffe...

Страница 16: ...dB higher 1 dB if the preamplifier gain is set to 20 dB or 14 dB lower 19 dB if the preamplifier is not used at all Outside the central linear range the gain starts to deviate from the ideal control l...

Страница 17: ...ns it is best to connect a decoupling capacitor to VOCM in which case the common mode voltage of the DSX is half the supply voltage which allows for maximum signal swing Nevertheless the common mode v...

Страница 18: ...gital converter AD9050 VREF requires a voltage of 1 25 V to 2 5 V with between 40 dB V and 20 dB V gain scaling respectively Voltage VGN controls the gain its nominal operating range is from 0 25 V to...

Страница 19: ...pass filter with a 3 dB corner frequency of about 9 1 kHz VOCM is decoupled to ground by a 0 1 F capacitor while VREF can be externally provided in this application the gain scale is set to 20 dB V by...

Страница 20: ...s set by R8 and C11 integrates the error signal presented by the low pass filter and changes VG until the error signal is equal to VSET For example if the signal presented to the detector is V1 A cos...

Страница 21: ...rs they clip around 2 2 V due to having to drive an effective load of about 30 If a different input common mode voltage needs to be accommodated ac coupling as in Figure 48 is recommended The differen...

Страница 22: ...stortion low noise amplifier The op amp output is ac coupled into the self biasing input of an AD9050 ADC that is capable of outputting 10 bits at a 40 MSPS sampling rate 20 27 28 26 22 14 13 10 15 16...

Страница 23: ...ONAL R3 RGN C6 0 1 F C3 0 1 F C1 0 1 F R2 RGN C4 0 1 F C2 5pF R1 500 C5 0 1 F C12 0 1 F C11 0 1 F C10 0 1 F C9 0 1 F C8 5pF R4 500 0 1 F C7 0 1 F NOTES 1 PAO1 AND PAO2 ARE USED TO MEASURE PREAMPS 2 RG...

Страница 24: ...mper in the top position of JP6 For direct drive of the Channel 2 VGA insert a jumper in JP14 and verify that there are no jumpers in JP12 and JP13 Refer to the schematic shown in Figure 61 for circui...

Страница 25: ...other output impedances DC OPERATING CONDITIONS Table 4 lists the trimmers and their functions provided for convenient dc level adjustments of gain reference voltage and output common mode voltage Ta...

Страница 26: ...057 2 EVALUATION BOARD ARTWORK AND SCHEMATIC 00540 059 Figure 59 Internal Ground Plane 0054 0054 Figure 57 Component Side Copper 00540 058 Figure 58 Secondary Side Copper 0 060 Figure 60 Internal Pow...

Страница 27: ...Reference Designator Manufacturer Part Number 1 Test loop Red 5 V Components Corp TP 104 01 02 1 Test loop Blue 5 V Components Corp TP 104 01 06 5 Test loop Black GND GND1 GND2 GND3 GND4 Components Co...

Страница 28: ...8 26 0 310 7 87 0 300 7 62 0 015 0 38 GAUGE PLANE 0 195 4 95 0 130 3 30 0 115 2 92 Figure 62 24 Lead Plastic Dual In Line Package PDIP Narrow Body N 24 1 Dimensions shown in inches and millimeters 15...

Страница 29: ...ard Small Outline Package SOIC_W RW 24 AD604AR REEL 40 C to 85 C 24 Lead Standard Small Outline Package SOIC_W RW 24 AD604ARZ1 40 C to 85 C 24 Lead Standard Small Outline Package SOIC_W RW 24 AD604ARZ...

Страница 30: ...AD604 Rev E Page 30 of 32 NOTES www BDTIC com ADI...

Страница 31: ...AD604 Rev E Page 31 of 32 NOTES www BDTIC com ADI...

Страница 32: ...AD604 Rev E Page 32 of 32 NOTES 1996 2008 Analog Devices Inc All rights reserved Trademarks and registered trademarks are the property of their respective owners D00540 0 10 08 E www BDTIC com ADI...

Отзывы: