AT-S63 Management Software Features Guide
Section IX: Management Security
419
It is very hard to find another message and key which give the same
hash
The two most commonly used one-way hash algorithms are MD5
(Message Digest 5, defined in RFC 1321) and SHA-1 (Secure Hash
Algorithm, defined in FIPS-180-1). MD5 returns a 128-bit hash and SHA-1
returns a 160-bit hash. MD5 is faster in software than SHA-1, but SHA-1 is
generally regarded to be slightly more secure.
HMAC is a mechanism for calculating a keyed Message Authentication
Code which can use any one-way hash function. It allows for keys to be
handled the same way for all hash functions and it allows for different
sized hashes to be returned.
Another method of calculating a MAC is to use a symmetric block cipher
such as DES in CBC mode. This is done by encrypting the message and
using the last encrypted block as the MAC and appending this to the
original message (plain-text). Using CBC mode ensures that the whole
message affects the resulting MAC.
Key Exchange
Algorithms
Key exchange algorithms are used by switches to securely generate and
exchange encryption and authentication keys with other switches. Without
key exchange algorithms, encryption and authentication session keys
must be manually changed by the system administrator. Often, it is not
practical to change the session keys manually. Key exchange algorithms
enable switches to re-generate session keys automatically and on a
frequent basis.
The most important property of any key exchange algorithm is that only
the negotiating parties are able to decode, or generate, the shared secret.
Because of this requirement, public key cryptography plays an important
role in key exchange algorithms. Public key cryptography provides a
method of encrypting a message which can only be decrypted by one
party. A switch can generate a session key, encrypt the key using public
key cryptography, transmit the key over an insecure channel, and be
certain that the key can only be decrypted by the intended recipient.
Symmetrical encryption algorithms can also be used for key exchange, but
commonly require an initial shared secret to be manually entered into all
switches in the secure network.
The
Diffie-Hellman
algorithm, which is used by the AT-S63 Management
Software, is one of the more commonly used key exchange algorithms. It
is not an encryption algorithm because messages cannot be encrypted
using Diffie-Hellman. Instead, it provides a method for two parties to
generate the same shared secret with the knowledge that no other party
can generate that same value. It uses public key cryptography and is
commonly known as the first public key algorithm. Its security is based on
the difficulty of solving the
discrete logarithm problem
, which can be
compared to the difficulty of factoring very large integers.
Содержание AT-S63
Страница 14: ...Figures 14 ...
Страница 18: ...Tables 18 ...
Страница 28: ...28 Section I Basic Operations ...
Страница 58: ...Chapter 1 Overview 58 ...
Страница 76: ...Chapter 2 AT 9400Ts Stacks 76 Section I Basic Operations ...
Страница 96: ...Chapter 5 MAC Address Table 96 Section I Basic Operations ...
Страница 114: ...Chapter 8 Port Mirror 114 Section I Basic Operations ...
Страница 116: ...116 Section II Advanced Operations ...
Страница 146: ...Chapter 12 Access Control Lists 146 Section II Advanced Operations ...
Страница 176: ...Chapter 14 Quality of Service 176 Section II Advanced Operations ...
Страница 196: ...196 Section III Snooping Protocols ...
Страница 204: ...Chapter 18 Multicast Listener Discovery Snooping 204 Section III Snooping Protocols ...
Страница 216: ...Chapter 20 Ethernet Protection Switching Ring Snooping 216 Section III Snooping Protocols ...
Страница 218: ...218 Section IV SNMPv3 ...
Страница 234: ...234 Section V Spanning Tree Protocols ...
Страница 268: ...268 Section VI Virtual LANs ...
Страница 306: ...Chapter 27 Protected Ports VLANs 306 Section VI Virtual LANs ...
Страница 320: ...320 Section VII Internet Protocol Routing ...
Страница 360: ...Chapter 30 BOOTP Relay Agent 360 Section VII Routing ...
Страница 370: ...Chapter 31 Virtual Router Redundancy Protocol 370 Section VII Routing ...
Страница 372: ...372 Section VIII Port Security ...
Страница 402: ...Chapter 33 802 1x Port based Network Access Control 402 Section VIII Port Security ...
Страница 404: ...404 Section IX Management Security ...
Страница 436: ...Chapter 36 PKI Certificates and SSL 436 Section IX Management Security ...
Страница 454: ...Chapter 38 TACACS and RADIUS Protocols 454 Section IX Management Security ...
Страница 462: ...Chapter 39 Management Access Control List 462 Section IX Management Security ...
Страница 504: ...Appendix B SNMPv3 Configuration Examples 504 Security Model Security Level Storage Type SNMPv3 Parameters Continued ...
Страница 532: ...Appendix D MIB Objects 532 ...