background image

17

rale in sequenza periodica, mettendo in tal modo in

 

moto la ruota di rame. Per lo smorzamento si utilizza

 

un freno elettromagnetico a corrente di Foucault (11).

 

Un anello graduato (4) con fessure e scala con divisio-

 

ni da 2 mm circonda il sistema oscillante; sull’eccitatore

 

e sul risonatore si trovano indicatori.
L’apparecchio può essere utilizzato anche nella dimo-

 

strazione della proiezione d’ombra.

Frequenza propria:

ca. 0,5 Hz.
da 0 a 1,3 Hz

Frequenza di eccitazione:

(regolabile di continuo)

Connessioni:
Motore:

max. 24 V CC, 0,7 A,
mediante jack di
sicurezza da 4 mm

Freno a corrente di Foucault:

 

da 0 a 20 V CC,

 

max. 2 A,

mediante jack di
sicurezza da 4 mm

Anello graduato:

300 mm Ø

Dimensioni:

400 mm x 140 mm x 270 mm
4 kg

Peso:

2.1 Fornitura

1 pendolo di torsione
2 masse supplementari da 10 g
2 masse supplementari da 20 g

3. Principi teorici

3.1   Simboli delle formule utilizzati

costante di collegamento angolare

D

=

momento di inerzia delle masse

=

J

momento torcente di richiamo

=

M

periodo

=

T
T

0

periodo del sistema non smorzato

=

T

d

periodo del sistema smorzato

=

M

E

ampiezza del momento torcente

=

dell'eccitatore
momento di smorzamento

=

b

frequenza

=

n

tempo

=

t

Λ

decremento logaritmico

=

δ

costante di smorzamento

=

ϕ

angolo di deviazione

=

ϕ

0

ampiezza relativa al tempo t = 0 s

=

ϕ

n

ampiezza dopo n periodi

=

ϕ

E

ampiezza di eccitazione

=

ϕ

S

ampiezza del sistema

=

ω

0

frequenza propria del sistema oscillante

=

ω

d

frequenza propria del sistema smorzato

=

ω

E

frequenza del circuito di eccitazione

=

ω

E

 

res

frequenza del circuito di eccitazione per

=

ampiezza max.

Ψ

0S

angolo di fase zero del sistema

=

3.2 Oscillazione di torsione armonica

Un'oscillazione armonica è presente se la forza di ri-

chiamo è proporzionale alla deviazione. In caso di oscil-
lazioni di torsione armoniche il momento torcente di
richiamo è proporzionale all'angolo di deviazione 

ϕ

:

M = D · 

ϕ

Il fattore di proporzionalità D (costante di collegamento
angolare) può essere calcolato mediante misurazione
dell'angolo di deviazione e del momento deviante.
La frequenza del circuito proprio del sistema 

ω

0

 si ot-

tiene dalla misurazione del periodo T

ω

0

 = 2 

π

/T

e il momento di inerzia delle masse J da

ω

0

2

=

D

J

3.3 Oscillazione di torsione smorzata libera

In un sistema oscillante, nel quale si verificano perdi-
te di energia a causa di perdite per attriti, senza che
l'energia venga compensata da energia apportata dal-
l'esterno, l'ampiezza si riduce costantemente, ossia
l'oscillazione è smorzata.
In ciò il momento di smorzamento b è proporzionale
alla velocità angolare 

ϕ

.

.

Dall'equilibrio del momento torcente si ottiene l'equa-
zione del moto

J

b

D

⋅ + ⋅ + ⋅ =

ϕ

ϕ

ϕ

..

.

0

Per l'oscillazione non smorzata, b = 0
Se inizia l'oscillazione relativa al tempo t = 0 s con
l'ampiezza massima 

ϕ

0

 

si ottiene la soluzione del-

l'equazione differenziale con uno smorzamento non
troppo potente (

δ

² < 

ω

0

²) (oscillazione)

ϕ 

ϕ

0

 ·  

e

δ

 ·t

 · cos (

ω

d

 · 

t

)

δ

 = b/2 J è la costante di smorzamento e

ω

ω

δ

d

0

2

2

=

ω

d

 = frequenza propria del sistema smorzato.

In caso di smorzamento potente (

δ

² > 

ω

0

²) il sistema

non oscilla ma scorre in posizione di riposo (scorrimen-
to).
In caso di smorzamento non troppo potente, il perio-
do T

d

 del sistema oscillante smorzato cambia solo leg-

germente rispetto a T

0

 del sistema oscillante non smor-

zato.
Inserendo  

t

 = 

n

 · 

T

d

  nell'equazione

 

ϕ 

ϕ

0

 ·  

e

δ

 ·t

 · cos (

ω

d

 · 

t

)

e per l'ampiezza in base a n periodi 

ϕ

 = 

ϕ

n

 si ottiene

con la definizione 

ω

d

 = 2 

π

/

T

d

ϕ
ϕ

δ

n

0

d

=

− ⋅

e

T

n

e da ciò il decremento logaritmico 

Λ

:

Λ = ⋅ = ⋅

=

δ

ϕ
ϕ

ϕ

ϕ

T

n

In

In

d

n

0

n

n+1

1

Содержание 1002956

Страница 1: ...motors 24 V DC nicht überschreiten Das Drehpendel keinen unnötigen mechanischen Belastungen aussetzen 2 Beschreibung technische Daten Das Drehpendel nach Prof Pohl besteht aus einem auf einer hölzernen Grundplatte montiertem schwingen den System und einem Elektromotor Das schwingen de System ist ein kugelgelagertes Kupferrad 5 das über eine Spiralfeder 6 die das rücktreibende Mo ment liefert mit d...

Страница 2: ...ck treibende Kraft proportional zur Auslenkung ist Bei harmonischen Drehschwingungen ist das rück treibende Drehmoment proportional zum Auslenk winkel ϕ M D ϕ Der Proportionalitätsfaktor D Winkelrichtgröße lässt sich durch Messung des Auslenkwinkels und des aus lenkenden Moments errechnen Die Eigenkreisfrequenz des Systems ω0 ergibt sich nach Messung der Periodendauer T aus ω0 2 π T und das Massen...

Страница 3: ...frequenz ωE res kleiner ist als die Eigen kreisfrequenz des Systems Diese Frequenz ergibt sich aus ω ω δ ω Eres 0 2 0 2 1 2 Bei starker Dämpfung gibt es keine Amplituden überhöhung Für den System Nullphasenwinkel Ψ0S gilt Ψ0S 0 2 2 arctan 2δ ω ω ωω Für ωE ω0 Resonanz ist der System Nullphasen winkel Ψ0S 90 Dies gilt auch für δ 0 mit entspre chendem Grenzübergang Bei gedämpften Schwingungen δ 0 und...

Страница 4: ... 2 T 2 2 ω 3 307 Hz 5 2 Freie gedämpfte Drehschwingung Zur Bestimmung der Dämpfungskonstante δ in Ab hängigkeit vom Strom Ι durch den Elektromagne ten wurde der gleiche Versuch mit zugeschalteter Wirbelstrombremse bei Ι 0 2 A 0 4 A und 0 6 A durchgeführt Ι Ι Ι Ι Ι 0 2 A n ϕ Ø ϕ Λ 0 15 15 15 15 15 1 13 6 13 8 13 8 13 6 13 7 0 0906 2 12 6 12 8 12 6 12 4 12 6 0 13 3 11 4 11 8 11 6 11 4 11 5 0 0913 4 ...

Страница 5: ... Ι Ι Ι Ι 0 4 A Motorspannung V ϕ 3 0 9 4 1 1 5 1 3 6 1 8 7 3 6 7 6 7 4 8 3 6 9 1 6 10 1 0 Ι Ι Ι Ι Ι 0 6 A Motorspannung V ϕ 3 0 9 4 1 1 5 1 2 6 1 6 7 2 8 7 6 3 6 8 2 6 9 1 3 10 1 0 Aus diesen Messungen lassen sich die Resonanz kurven grafisch darstellen indem man die Ampli tuden in Abhängigkeit zur Motorspannung aufträgt Aus der Halbwertsbreite des Grafen kann die Reso nanzfrequenz grafisch ermitt...

Страница 6: ...permissible supply voltage for the exciter motor 24 V DC Do not subject the torsional pendulum to any un necessary mechanical stress 2 Description technical data The Professor Pohl torsional pendulum consists of a wooden base plate with an oscillating system and an electric motor mounted on top The oscillating system is a ball bearing mounted copper wheel 5 which is connected to the exciter rod vi...

Страница 7: ... proportional to the deflection In the case of harmonic rotary oscillations the restoring torque is proportional to the deflection angle ϕ M D ϕ The coefficient of proportionality D angular direction variable can be computed by measuring the deflec tion angle and the deflection moment If the period duration T is measured the natural reso nant frequency of the system ω0 is given by ω0 2 π T and the...

Страница 8: ...wer than the sys tem s natural frequency This frequency is given by ω ω δ ω Eres 0 2 0 2 1 2 Stronger damping does not result in excessive ampli tude For the system s zero phase angle Ψ0S the following is true Ψ0S 0 2 2 arctan 2δ ω ω ωω For ωE ω0 resonance case the system s zero phase angle is Ψ0S 90 This is also true for δ 0 and the oscillation passes its limit at this value In the case of damped...

Страница 9: ...lowing holds true ω π δ 2 T 2 2 ω 3 307 Hz 5 2 Free damped rotary oscillations To determine the damping constant δ as a func tion of the current Ι flowing through the electro magnets the same experiment is conducted with an eddy current brake connected at currents of Ι 0 2 A 0 4 A and 0 6 A Ι Ι Ι Ι Ι 0 2 A n ϕ Ø ϕ Λ 0 15 15 15 15 15 1 13 6 13 8 13 8 13 6 13 7 0 0906 2 12 6 12 8 12 6 12 4 12 6 0 13...

Страница 10: ... 1 Ι Ι Ι Ι Ι 0 4 A Motor voltage V ϕ 3 0 0 9 4 0 1 1 5 0 1 3 6 0 1 8 7 0 3 6 7 6 7 4 8 0 3 6 9 0 1 6 10 0 1 0 Ι Ι Ι Ι Ι 0 6 A Motor voltage V ϕ 3 0 0 9 4 0 1 1 5 0 1 2 6 0 1 6 7 0 2 8 7 6 0 3 6 8 0 2 6 9 0 1 3 10 0 1 0 From these measurements the resonance curves can be plotted in a graph depicting the amplitudes against the motor voltage The resonant frequency can be determined by find ing the ha...

Страница 11: ...as exposer le pendule à des charges mécani ques inutiles 2 Description caractéristiques techniques Le pendule tournant d après Prof Pohl est constitué d un système oscillant monté sur une plaque de base en bois et d un moteur électrique Le système oscillant est constitué d une roue en cuivre 5 montée sur un roulement à billes qui est reliée à la barre de l excitateur par un ressort spiral 6 fourni...

Страница 12: ...armonique Une oscillation est harmonique lorsque la force de rap pel est proportionnelle à la déviation En présence d os cillations tournantes harmoniques le couple de rap pel est proportionnel à l angle de déviation ϕ M D ϕ Le facteur de proportionnalité D grandeur direction nelle angulaire peut être déterminé en mesurant l an gle de déviation et le couple déviant D après la mesure de la durée d ...

Страница 13: ...e angulaire de l excitateur ωE res étant infé rieure à la fréquence angulaire propre du système Cette fréquence résulte de ω ω δ ω Eres 0 2 0 2 1 2 Si l amortissement est trop important l amplitude n augmente pas L équation suviante s applique à l angle de phase nulle du système Ψ0S Ψ0S 0 2 2 arctan 2δ ω ω ωω Si ωE ω0 résonance l angle de phase nulle du sys tème Ψ0S 90 Ceci s applique également po...

Страница 14: ...tion ω π δ 2 T 2 2 ω 3 307 Hz 5 2 Oscillation tournante amortie libre Pour déterminer la constante d amortissement δ en fonction de l intensité Ι par l électro aimant la même expérience a été réalisée avec un frein à cou rants de Foucault à Ι 0 2 A 0 4 A et 0 6 A Ι Ι Ι Ι Ι 0 2 A n ϕ Ø ϕ Λ 0 15 15 15 15 15 1 13 6 13 8 13 8 13 6 13 7 0 0906 2 12 6 12 8 12 6 12 4 12 6 0 13 3 11 4 11 8 11 6 11 4 11 5 ...

Страница 15: ...Ι Ι Ι 0 2 A Tension moteur V ϕ 3 0 9 4 1 1 5 1 2 6 1 7 7 2 9 7 6 15 2 8 4 3 9 1 8 10 1 1 Ι Ι Ι Ι Ι 0 4 A Tension moteur V ϕ 3 0 9 4 1 1 5 1 3 6 1 8 7 3 6 7 6 7 4 8 3 6 9 1 6 10 1 0 Ι Ι Ι Ι Ι 0 6 A Tension moteur V ϕ 3 0 9 4 1 1 5 1 2 6 1 6 7 2 8 7 6 3 6 8 2 6 9 1 3 10 1 0 A partir de ces mesures on peut représenter les courbes de résonance sous forme graphique en re portant les amplitudes en fonct...

Страница 16: ...e a sollecita zioni meccaniche non necessarie 2 Descrizione caratteristiche tecniche Il pendolo di torsione del Prof Pohl è composto da un sistema oscillante montato su una piastra di base in legno e da un motore elettrico Il sistema oscillante si compone di una ruota di rame con cuscinetti a sfera 5 collegata all asta di eccitazione tramite una molla a spirale 6 che fornisce il momento di richiam...

Страница 17: ...azione armonica è presente se la forza di ri chiamo è proporzionale alla deviazione In caso di oscil lazioni di torsione armoniche il momento torcente di richiamo è proporzionale all angolo di deviazione ϕ M D ϕ Il fattore di proporzionalità D costante di collegamento angolare può essere calcolato mediante misurazione dell angolo di deviazione e del momento deviante La frequenza del circuito propr...

Страница 18: ...cuito proprio del sistema Questa frequenza si ottiene da ω ω δ ω Eres 0 2 0 2 1 2 In caso di smorzamento potente non si verifica alcun incremento di ampiezza Per l angolo di fase zero del sistema Ψ0S vale Ψ0S 0 2 2 arctan 2δ ω ω ωω Per ωE ω0 risonanza l angolo di fase zero del siste ma Ψ0S 90 Ciò vale anche per δ 0 con relativa transizione Con oscillazioni smorzate δ 0 e ωE ω0 si ottiene 0 Ψ0S 90 ...

Страница 19: ... propria ω vale ω π δ 2 T 2 2 ω 3 307 Hz 5 2 Oscillazione di torsione smorzata libera Per la determinazione della costante di smorzamento δ in funzione della corrente Ι me diante l elettromagnete è stato eseguito lo stesso tentativo con il freno a corrente di Foucault inseri to con Ι 0 2 A 0 4 A e 0 6 A Ι Ι Ι Ι Ι 0 2 A n ϕ Ø ϕ Λ 0 15 15 15 15 15 1 13 6 13 8 13 8 13 6 13 7 0 0906 2 12 6 12 8 12 6 1...

Страница 20: ... Ι Ι Ι Ι Ι 0 4 A Tensione motore V ϕ 3 0 9 4 1 1 5 1 3 6 1 8 7 3 6 7 6 7 4 8 3 6 9 1 6 10 1 0 Ι Ι Ι Ι Ι 0 6 A Tensione motore V ϕ 3 0 9 4 1 1 5 1 2 6 1 6 7 2 8 7 6 3 6 8 2 6 9 1 3 10 1 0 Da queste misurazioni è possibile rappresentare graficamente le curve di risonanza tracciando le ampiezze in funzione della tensione del motore Dalla semilarghezza del grafo può essere determi nata graficamente la...

Страница 21: ...el motor de excitación 24 V c c El péndulo oscilatorio no se debe someter a esfuer zos mecánicos innecesarios 2 Descripción datos técnicos El péndulo según Pohl se compone de un sistema oscilatorio montado sobre una placa base de madera y de un motor eléctrico El sistema oscilatorio consta de un rueda de cobre 5 asentada sobre un rodamien to de bolas y conectada a la varilla de excitación por medi...

Страница 22: ...gular del excitador para la máx amplitud Ψ0S ángulo de fase cero del sistema 3 2 Oscilación torsional armónica Una oscilación armónica se presenta cuando la fuerza de reacción es proporcional a la desviación En el caso de las oscilaciones torsionales armónicas el par de giro de retroceso es proporcional al ángulo de desviación ϕ M D ϕ El factor de proporcionalidad D magnitud de referen cia angular...

Страница 23: ...tiguación no demasiado fuerte se alcanza la máxima amplitud del sistema siendo la frecuencia angular del excitador ωE res menor que la frecuencia angular propia del sistema Esta frecuencia se obtiene a partir de ω ω δ ω Eres 0 2 0 2 1 2 Si se tiene una amortiguación fuerte no se producen excesos de amplitud Para el ángulo de fase cero Ψ0S del sistema es válido Ψ0S 0 2 2 arctan 2δ ω ω ωω Para ωE ω0...

Страница 24: ...onstante de amortiguación δ 0 308 s 1 5 3 Oscilación torsional forzada Para determinar la amplitud de oscilación en fun ción de la frecuencia del excitador o bien de la tensión de alimentación se lee la máxima oscila ción del cuerpo pendular 5 Ejemplos de experimentos 5 1 Oscilación torsional de amortiguación libre Para determinar el decremento logarítmico Λ se miden y se promedian las amplitudes ...

Страница 25: ...l freno de co rrientes parásitas con I 0 2 A 0 4 A y 0 6 A Ι Ι Ι Ι Ι 0 2 A Tensión del motor V ϕ 3 0 9 4 1 1 5 1 2 6 1 7 7 2 9 7 6 15 2 8 4 3 9 1 8 10 1 1 Ι Ι Ι Ι Ι 0 4 A Tensión del motor V ϕ 3 0 9 4 1 1 5 1 3 6 1 8 7 3 6 7 6 7 4 8 3 6 9 1 6 10 1 0 Ι Ι Ι Ι Ι 0 6 A Tensión del motor V ϕ 3 0 9 4 1 1 5 1 2 6 1 6 7 2 8 7 6 3 6 8 2 6 9 1 3 10 1 0 A partir de estas mediciones se pueden represen tar grá...

Страница 26: ...e torção não deve ser sujeito a qual quer esforço físico desnecessário 2 Descrição dados técnicos O pêndulo de torção segundo Prof Pohl consiste num sistema oscilatório montado sobre uma placa base de madeira e um motor elétrico O sistema oscilatório consiste numa roda de cobre com rolamento 5 a qual está conectada com a vara do excitador por meio de uma mola espiral 6 que por sua vez fornece o mo...

Страница 27: ... máx Ψ0S Ângulo de fase do sistema 3 2 Oscilações de torção harmônicas Uma oscilação de torção harmônica se dá quando a força de restituição é proporcional ao deslocamento angular Nas oscilações de torção harmônicas o mo mento de torção de reação é proporcional ao desloca mento angular ϕ M D ϕ O fator de proporcionalidade D grandeza de referên cia angular pode ser calculado através da medição do d...

Страница 28: ...r ωE res é menor do que a freqüência própria do sistema Esta freqüência resulta de ω ω δ ω Eres 0 2 0 2 1 2 Com amortecimento forte não há aumento excessivo de amplitude Para o ângulo de fase do sistema Ψ0S é válido Ψ0S 0 2 2 arctan 2δ ω ω ωω Para ωE ω0 ressonância o ângulo de fase do siste ma Ψ0S 90 Isto é válido também para δ 0 com a extrapolação correspondente No caso das oscilações amortecidas...

Страница 29: ...π δ 2 T 2 2 ω 3 307 Hz 5 2 Oscilações de torção livres amortecidas Para determinar a constante de amortecimento δ em relação de dependência com a corrente Ι atra vés do imã eletromagnético foi realizado o mes mo ensaio com o freio de corrente parasita ligado com Ι 0 2 A 0 4 A e 0 6 A Ι Ι Ι Ι Ι 0 2 A n ϕ Ø ϕ Λ 0 15 15 15 15 15 1 13 6 13 8 13 8 13 6 13 7 0 0906 2 12 6 12 8 12 6 12 4 12 6 0 13 3 11 4...

Страница 30: ...nsão do motor V ϕ 3 0 9 4 1 1 5 1 2 6 1 7 7 2 9 7 6 15 2 8 4 3 9 1 8 10 1 1 Ι Ι Ι Ι Ι 0 4 A Tensão do motor V ϕ 3 0 9 4 1 1 5 1 3 6 1 8 7 3 6 7 6 7 4 8 3 6 9 1 6 10 1 0 Ι Ι Ι Ι Ι 0 6 A Tensão do motor V ϕ 3 0 9 4 1 1 5 1 2 6 1 6 7 2 8 7 6 3 6 8 2 6 9 1 3 10 1 0 A partir destas medições pode se representar as curvas de ressonância de forma gráfica integrando as amplitudes dependendo da tensão do mo...

Отзывы:

Похожие инструкции для 1002956