background image

INSTA L L ATION 

Westinghouse 

I.L.  41-776.1A 

• 

O PER ATION 

• 

M A INTENANCE 

INSTRUCTIONS 

TYPE  KC-4  OVERCURRENT  RELAY 

CAUTION 

Before  putting  relays  into  service,  remove 

all  blocking  which  may  have  been  inserted  for  the 

purpose  of  securing  the  parts  during  shipment,  make 

sure  that  all  moving  parts operate freely,  inspect  the 

contacts to see that they are  clean  and  close  properly, 

and  operate  the  relay  to  check  the  settings  and  elec­

trical  connections, 

APPLICATI ON 

The  type 

KC-4 

is  a  non-directional  current  or 

fault detector  which _?perates  for all phase  and  ground 
faults  to  supervise  the  tripping  of other  relays.  It  i s  
well  suited 

to 

breaker-failure  relaying  for  indicating 

the  presence  or  lack  of  current  flow  in  the  circuit 
breaker,  The  relay  can  be  applied  where  the  phase 
units  are  to  be  operated  indefinitely  in  the  picked  up 

po sition  well  below  full  load,  Alternatively,  where 

the  relay  is  to  be  used  as  a  fault  detector  (pickup 
above  full load)  the 

98o/c 

or  betterdropout  ratio  of  the 

phase  units  is  advantageous. 

Breaker-failure  relaying  offers  advantages  over 

remote  back-up  protection.  It  is  faster  and more  sen­

sitive  than remote  back-up  methods,  In  addition,  it  i s  

selective.  whereas  remote  back-up  protection  is 
frequently  non-selective. 

Fig, 

shows  some fault 

conditions  where  breaker-failure  relaying  could  im­

prove the  quality  of back-up protection,  Note  that  the 

generating-station  high-voltage  bus  uses  a  breaker­
and-a-half arrangement. Lines interconnect the  station 

to  systems 

81,  82, 

and 

8

3

If  there  is  no  malfunctioning,  fault  L  will  be 

cleared  by  line  relays  tripping  breakers 

5, 

6,  and 

9. 

However, assume that  the breaker-6  mechanism  stick s 

so  that  current  flow  through  breaker  6  is  not  inter­

rupted,  Now  back-up  protection  must  function,  If  re­

mote  backup  is  relied  upon ,   time-delay  relays  must 
trip  remote  break ers 

and 

8. 

In  addition,  the  local 

generator  feed  through  breaker  6  must  be  interrupte d 

by  tripping  breaker 

4, 

However,  if  break er-failure 

SUPERSEDES  I .L  41-776.1 

*Denotes  change  from  superseded  issue. 

protection  is  installed,  the  fault  is  cleared  by  trip­

ping  breaker 

3. 

Note  that  this  provided  selective 

tripping,  since  as  much  of  the  system  as  po ssible 
was  left  intacL  If breakers 

4,  7, 

and 

must  trip,  the 

local  generator  is  lost  and  unn ecessary  separation 

of  the  generating  station  from  power  systems 

8 1 

and 

82 

results.  Also,  the  tapped  load  is  interrupted  un­

necessarily  instead  of  being  left  tied  to  system 

8  , 

Remote backup, in  addition to not being  selective, 

may not  be sensitive  enough  because  of the relatively 
small  proportion  of  the  total  fault  current  following 

in  any  one  line.  For  e xample,  in  Fig, 

there  may  be 

very  little  current  flow  in  breakers 

and 

for  fault 

L  because  of  the  large  current  contribution  by  the 
local  machine s   at  the  generating  station,  Thus,  it 

may  be  diffiC1llt  or impossible  at  breakers 

and 

to 

detect  adj acent  line  faults  without  depending  upon 
sequential tripping, If the generator feed  is  interrupted 

for  fault  L ,   such  as  by  tripping  breaker 

4, 

the  current 

through  breakers 

and 

may  increase  sufficiently 

for  the  relays  to  operate  and  trip  breakers 

and 

8, 

However,  the  system  is  by  now  cut  to  pieces,  and 
because of  the  long  time  delay  in  clearing  the  fault, 
the  remainder  of  the  system  may  be  unstable. 

Although  break er-failure  protection  offers  many 

advantages ,   remote  backup  cannot  be  completely 
eliminated.  For  example ,  assume  that  breaker 

fails 

for  bus-fault  B  in  Fig, 

2. 

Breaker-failure  protection 

will  promptly  trip  breaker 

2, 

but  the  fault  is  still  fed 

by  breaker 

8. 

Likewise,  if breaker 

fails  with  a  line 

fault  at  M,  a  remote  breaker  must  trip  to  clear  the 
fault.  Breaker-failure  protection  trip s  breaker  3,  but 
break er 

still  feeds  the  fault. 

Although  breaker­

failure  protection  does  not  complete  the  job  in  these 

e xamples, it does  e xpeditiously trip  the local  breaker, 
making  it  easier  for  the  remote  relays 

to 

detect  the 

fault, 

EFFECTIVE  JAN UARY  1965 

www 

. ElectricalPartManuals 

. com 

Summary of Contents for KC-4

Page 1: ...6 must be interrupted by tripping breaker 4 However if breaker failure SUPERSEDES I L 41 776 1 Denotes change from superseded issue protection is installed the fault is cleared by trip ping breaker 3 Note that this provided selective tripping since as much of the system as possible was left intacL If breakers 4 7 and 8 must trip the local generator is lost and unnecessary separation of the generat...

Page 2: ...TYP E K C 4 R ELA Y 2 ai 0 lJ w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 3: ...f each pair are mounted diametrically opposite one another and a capacitor is connected in series with one pair of coils In addition there are two locating pins The locating pins are used to accu rately position the lower pin bearing which is threaded into the bridge The electromagnet is secured to the frame by four mounting screws The moving element assembly consists of a spiral spring contact ca...

Page 4: ...f pickup current for any tap setting resulting in one time curve through out the range of the relay General Operation Of S c h em e When the proper breaker successfully inter rupts the fault current the KC 4 relay quickly disables the breaker failure timing circuit In addition where the line relays trip two breakers such as on a ring 4 IMSTAIITAIIEOUS OVEitCURitENT Ur fflt C l l UIIIT tiiOICATIIfG...

Page 5: ...o 7 PHA SE I 2 3 GND 2 3 INT ERNAL SC H EMATIC S DEVIC E TRB 1 TRB 1 VALVE 50 KC 4 62 T0 5 62X 62Y 86 94 TR I RELAY A Y ORA II WING 8ER NUMI 184A 188 A 187A 183 A 183 A 640 Z93 1 0 8 184 A 0 62 POS _ _ L IN E B A C K U _ P _____B U S O IF_F_ _______________ a R E A K E R F A IL U R E _ 86 1 101 B T T TRB I 94 4 1 n 62X 7 32 v OIL MG 62X I A62Y 3 y 9 220 87 B OTHER BREA KER CIRCU ITS r ___ _ 50 T 8...

Page 6: ...reaker failure timer which is energized by the line A relay 6 detector 50 1 selects the faulty breaker Note that the line A part of the bus L timer circuit in Fig 5 is the same as that used with the single bus single breaker arrangement in Fig 4 If breaker 1 fails for a fault on bus L it is de sirable to trip breaker 2 and stop the transmission of blocking carrier on line A This is accomplished by...

Page 7: ...86_r TRI P zT BKR 2 86_r L INEA Z L cARRIER STOP 2 62 L z L 6 1 BKR 2 TRIPPING 52 a BKR 2 86 z 86 TRIP LN C _ BKR 3 86 c BLOCK RECL LN r _ BKR 1 86 BLOCK RECL LNL _ BKR 2 86 r BLOCK RECL LN r _ BKR 3 86 r L INEA L N 1 _ CARRIER STOI 86__r L INE B LNL _ CARRIER STOPI DEVIC E BKR 2 F AILURE DETECTION DESCRIPTION 62 y NO REQ D 1 m o n i 0 m I i E l e c t r i c a l P a r t M a n u a l s c ...

Page 8: ...0 2 or 2 amperes To change taps requires connecting of lead located in front of the tap block to the desired setting by means of a screVI connection T r i p C irc ui t Con stants Indicating Contactor Switch 0 2 amp tap 6 5 ohms d e resistance 2 0 amp tap 0 15 ohms d e resistance E N E R G Y R E Q U I R E M E N T S PHASE GROUND OVERCURRENT UNIT 60 CYC LES Ampere VA at VA at Range Tap Tap Value P F ...

Page 9: ...LOCK RICLOSIIG T 11111 2 0 0 16lN 2 1 t BLOCK IECLOS IIG T ou a 1 0 0 1 LIIE A llll 2 CAIIIEI T 0 STOP MLI Z l liE I T CAIIIEI STOP 0 IEG _ _________________ __________________________ __ L _ LIIE D LIIE CK DEVICE TRB 50 62 62X 62Y 86UI t MAlE COllTACT If USED Will Sll 12 1 11EAK COITACT If USED Will IC NO REQ D STATIC TRIPPING UNIT i iUiiiE IC CURREJT DETECTOR 1 IKR Tb i BlEAKER FAILURE TIMEI 1 B...

Page 10: ...made at the factory Upon receipt of the relay no customer adjustments other than those covered under SETTINGS should be required 10 A c c e ptance C heck The following check is recommended to insure that the relay is in proper working order Phase Group Overcurrent Unit 1 Contact Gap The gap between the station ary and moving contacts with the relay in the de energized position should be approximat...

Page 11: ...y placing a screwdriver of similar tool into one of the notches located on the periphery ofthe spring adjuster and rotating it The spring adjuster is located on the underside of the bridge and is held in place by a spring type clamp that does not have to be loosened prior to making the necessary adjustments Insert the tap screw in the minimum value tap setting and adjust the spring such that the c...

Page 12: ...PANEL CUTOUT I ORILLIMG FOR SEMI FLUSH MTG ftAIEL DaILLING OW CUTOUT FOR ft IO IICTfOII NT FROIIT VIEW Fig 8 KC 4 in FT 4 1 Case 57 D 7904 WESTINGHOUSE ELECTRIC CORPORATION RELAY INSTRU MENT D I VI S I O N NIWARK N J Printed In U S A w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 13: ...ower SUPERSEDES I L 41 766 1A Denotes changed from superseded issue bearing for the plunger shaft is assembled in the lower end of this threaded tube It is held in place by two split spring sleeves one above and one below the bearing The split sleeves must be compressed to insert them in the tube and they will remain at any position in which they are placed The bearing for the upper end of the plu...

Page 14: ...he plate from rotating 2 CONTACTS EITriE 1 MAKE 1 BREAK Oil s E MOTE COIL TAPPED FOR 1 TO 25 RATIO IAIIGE OYERCURREU UII I T REDiiAMDLE TEST SWITCH CI WREMT TEST IACIC TE IUL CHASSIS Of UUEO ShORT Ill SWITCn Fig 2 Internal Schematic of the Single Unit Type SC or SC 1 Relay in The Type FT21 Case The moving contacts are double faced so that they can be make or break and are connected to the base ter...

Page 15: ...T S A N D M A I N TEN A NCE The proper adjustments to insure correct opera tion of this relay have been made at the factory and CVIITACTS EllNER l MAKE 1 ORE h OR J foUl OR l d EU ASKE JUiii ED IMTUIIAL SCHEMATIC FROIIT VIEW REDH 4KDLE TEST SWITC11 TERMIMAL Fig 4 Internal Schematic of the Single Unit Type SV or SV 1 Relay in the Type FT2 1 Case should not be disturbed after receipt by the customer...

Page 16: ...rings when re assembling the relay since this will eventually become gummy and prevent proper operation It is recommended that the shaft be clean tGii lCfS EITIIEI MAI E OR IlEAl AS IHOUIIfD IIOJf COJLS UPI fD FDI l TO 2i IATIO TOP L h r fiOIT Ia CHASSIS 011 14JIO ltiOifllli IWilC TESTSI JTCIII CUIIEWT niT 183Al93 Fig 6 Internal Schematic of the Three Unit Type SC or SC 1 Relay in the Type FT32 Ca...

Page 17: ...atio De 65 80 65 80 65 80 65 80 65 80 65 80 65 80 65 80 25 40 25 40 25 40 25 40 25 40 25 40 25 40 25 40 Dropout Ratio 90 98 90 98 90 98 90 98 90 98 90 98 65 80 65 80 40 80 40 80 40 80 40 80 40 80 40 80 25 40 25 40 NOTES Standard current relays are calibrated on 60 cycles This calibration is approximately correct for 25 cycle and DC applications but there will be discrepancies of 10 to 15 at some p...

Page 18: ... n t 2 1 iJ I I 2 I I I j I til Jt u u 1 0 SVantl SV 1 e gJon cr ces 1 m rr r n lTI J I H x Set m scand sc tl ltays on 60 cycle Hr1faM 11ax sellin 1 1 f 1 i lliJlffi Ht_2 H n Settin _ I 11 i ii rmrHf I rill 1ft II i iJ iillill II Ill 1 1il H IT I 100 zoo 400 600 800 000 Perunt ofPick upSettin9 on SC orSC IRelay 60 Cycles 100 150 zoo 250 300 Percent of Pick up Settinq on SVor sv 1Reloy and on SC or...

Page 19: ...is de energized they should be located so that they j ust touch the moving contacts when the latter are 1 32 above the de energized position On some relays it may be found that when the contacts are used in this position the relay may operate at values a few percent below the scale markings The adjustments specified for the stationary contacts are important Failure to observe them may cause improp...

Page 20: ...AIID MOUITIIIG DETAILS f01A 10 MOllS 011 CUT OUT r o1 110us FOil se I 1110 32 MTa seam 2 1 32 r t I PAIIEL ctllUUT I DillU IM fOR SEMI FLUSII MT8 Tf PAIEL DIIIU IM8 011 CUTOUT FOil PWECTIOII MT8 FitOirT YIEW _j I 1 L lf __ TEIIUIAL Mtle 11 57 D 7901 Fig 1 1 Outline Drilling P lan for Single Double Unit Relays in the Type FTll Case w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 21: ...I IIM AID I40UIITIMG DElli LS PAIIEL CUTOUT DRI LL ING FOR SElU FLUSH NTG PANEL DRi LLtiG OR CUTOUT Filii I IO IECTION 141 8 FRDtiT Yt EW I DI A MOLES FOR 190 32 NTG SCII 1fS 3 i gu 20 HOUS R CUT OUT 57 D 7903 Fig 12 Outline Drilling Plan lor Three Unit Relays in the Type FT32 Can 9 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 22: ...w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 23: ...w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 24: ...WEST I NGHOUSE EL E CTR I C CORPORATION RELAY INSTRU MENT D IVI S I ON NEWARK N J Printed In U S A w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 25: ...tlity of b ack up protection Note that the SUP ERSEDES I L 4 1 776A Complete Revi sion generating station high voltage bus uses a breaker and a half arrangement Lines interconnect the station to systems 81 82 and 83 If there is no malfunctioning fault L will be cleared by line relays tripping breakers 5 6 and 9 However assume that the breaker 6 mechanism sticks so that current flow through breaker...

Page 26: ...BLOCK Fig 1 Type KC 3 Relay Without Case R ECTI FI ER ARC SUPPRESSO R ASSY FOR X CmlTACT l 1 UNIT SATU RATlt1G TRAt SF VARISTOR PHASE SH I FT CAPAC ITO R 1 2 U N I T SATU RATI NG TRAN SF PHASE SH I FT CAPAC ITOR J t tt m 0 w 0 m r E l e c t r i c a l P a r t M a n u a l s c ...

Page 27: ...g can be replaced if neces sary without h aving to remove the magnetic core from the frame The electromagnet has two p airs of coils The coils of each pair are mounted diametrically opposite one another In addition there are two locating pins The locating pins are used to accurately position the lower pin be aring which is threaded into the bridge The electromagnet is secured to the frame by four ...

Page 28: ...ype device A magnetic armature to which leaf spring mounted contacts are attached is 4 IIIICATIH TICTII IWI fCII TW _ ra m lilT flMI cn 1 r can KM n II W f t u n t t IIT1 W Lm F t CIAIIII_IPIIIm rr tTIII 1UT n01 lUT TbiiiM Fig 4 Internal Schematic of the Type KC 3 Re lay in FT42 Case with ICS 2 Contact to Separate Terminal attracted to the magnetic core upon energization of the switch When the swi...

Page 29: ... 184 A 4 1 5 Q _ I K C 3 RELAY 1 1 8 4 A 959 62 T0 3 RELAY 1 8 4 A 67 7 1 8 3 A 2 2 3 183 A 1 0 8 AY 184 A062 BREAKER TRIPPING L I N E BAC K U P BUS DIFF BREAKER FAILURE POS r R 86 _ _ 101 B T T 62X I 94 62Y 3 y 9 50 T5 _j 50 16 ro X I I OTHER BREAKER CIRCUITS 9 9 1 l u ci 0 u I T NEG _ J Fig 5 External Schematic of the KC 3 Relay for Breaker Fai lure Protection of a Single B us Sing le Breaker Ar...

Page 30: ...X contacts Relay 86B then trips all the breakers on the bus 6 The TRB 1 rectifier in the primary protection circuits of Fig 5 blocks the flow of red light super vision current through the 62X coil If the KC 3 phase overcurrent units are set above load current a 50X contact may be inserted in series with the 62X coil to block the red light currents Then the TRB 1 is not needed An MG 6 relay perform...

Page 31: ...il l liill TRil 50 82 82X 2Y Bill 86LM 878 9 pE CIIPT OM STATI C TIIPPIMG UNI T KC 3 CUIWT DETECTOR TD 3 IKI FAI LUIE TilER Mii TIMfi AIIX S i TilER AIIX IIIIS D I FF t OCKDUT llll Mll f dlR FAIL LOCKOUT 1111 I I FF TR I AUX Tli i P I MG RELAY LIME 1 IU l tM I 1 BUS 1 LIII 1 LIII IUS 2 BAY 3 IU 1 LIII Fig 6 Simplified Externr l Schemr tic of th e Type KC 3 for Breaker Failure Protection of a Break...

Page 32: ...n conjunction with relay 86LN to stop carrier on line A or line B when breaker 2 trips Relay 5 is energized by the primary relays If breaker 1 fails for a fault on line D relay 5 of line D is energized setting up the Line A carrier stop cir cuit so that when relay 86LN is operated in the breaker 2 t rip circuit carrier blocking will be removed from line A to permit remote carrier relay tripping Ot...

Page 33: ... Dc u L _ v _ J 1 4f l 02 TO IU l TaiP CH au TI I P en 1111 2 L_____ _ aw m 2 Tltr CO I L Ill 2 I IU PilOT Lllf I LIIE I Lilli I 2 110 3 na 4 4 LINE D Lllll A UIIIE c LIME Xa piCE TRO 5 so ti l 62X 621 S _f STAT 1C TR I Pf l A 1 UIU r SU CARK I E R STOP R U Y KC 3 CuaREMT Of TE CTO t ffj 3 Bi E UER fA ilUIU T Mf lil I TiM Ad s lUt 2 Au t 1 L IMIIUT TI l Tlll lll tELAY itO ltEQ D 1 LiltE Lilli 1 11...

Page 34: ...0 3 0 2 5 50 28 2 1 3 53 26 1 5 4 59 24 0 9 3 2 1 1 49 6 5 3 1 2 43 3 3 4 1 3 38 2 1 5 1 4 35 1 4 6 1 5 33 1 8 1 8 29 O il GROUND OVERCURRENT UNIT 10 60 CYCLES Ampere Range 0 5 2 1 4 Range 5 2 1 4 2 8 VA at VA at VA at Min Pickup M ax Pickup 5 Amps 4 5 32 2 15 4 5 32 53 Rating of Phase Overcurrent Unit 0 1 I3 Continuous Rating Amperes 5 8 8 One Second Rating Amperes 100 140 140 Rating of Ground Ov...

Page 35: ...directly to the terminals by means of screws for steel panel mount ing or the terminal studs furnished with the relay for thick panel mounting The t erminal studs may be e asily removed or inserted by locking two nuts on the stud and then turning the proper nut with a wrench For detailed information refer to I L 4 1 076 A D J U ST M E N T S AN D M A I N T E N A N C E The proper adjustments to insu...

Page 36: ...ontact C a l i bration Use the following procedure for calibrating the relay if the relay has been taken apart for repairs or 12 60 10 Ill c 40 z 0 0 IIJ Ill i 3 0 II vPIC UP y IIJ II 20 v _ _ 1 DR P O U T 10 2 4 6 8 1 0 12 14 16 1 8 20 MU LTIPLES OF P IC K UP S E T T ING 184A992 Fig 9 Maximum Pick Up and Drop Out Time Curves for the Ground Overc urrent Unit Plus Auxi I iary Unit the adjustments h...

Page 37: ...ng contact should touch both stationary contacts simultaneously Indicating Contactor Switch ICS 1 and ICS 2 Close the main relay contacts and pass sufficient d e current through the trip circuit to close the con tacts of the ICS This value of current should be not greater than the particular ICS tap setting being used The operation indicator target should drop freely To increase the pickup current...

Page 38: ..._ __ __ __ __ __ __ __ __ __ __ __ __ 14 1 90 32 EW i 01 4 llfOL 5 I 1 90 32 TGr SCRrN 11 J X f AWE CUTOUT t DR ING r oR EM U lo ATG 57 D 7905 Fig 10 O utline and Dri l l i ng P lan for the Type KC 3 Relay i n FT 42 Cas e w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 39: ...w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 40: ...W E S T IN GHOU S E E L E C T RIC CO R P ORAT ION R ELAY D E PA R T M E N T N EWA R K N J Printed in U S A w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 41: ...nerator feed through breaker 6 must be interrupted by tripping breaker 4 However if breaker failure NEW I NFORMATION protection is installed the fault is cleared by trip ping breaker 3 Note that this provided selective tripping since as much of the system as possible was left intact If breakers 4 7 and 8 must trip the local generator is lost and unnecessary separation of the generating station fro...

Page 42: ...T Y P E K C 4 R E LAY ai Ill c I J c i Cll 0 Cll ll 0 ii 2 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 43: ...irs of coils The coils of each pair are mounted diametrically opposite one another and a capacitor is connected in series with one pair of coils In addition there are two locating pins The locating pins are used to accu rately position the lower pin bearing which is threaded into the bridge The electromagnet is secured to the frame by four mounting screws The moving element assembly consists of a ...

Page 44: ...use of a tapped transformer provides approximately the same energy level at a given multiple of pickup current for any tap setting resulting in one time curve through out the range of the relay General O peration Of Scheme When the proper break er successfully inter rupts the fault current the KC 4 relay quickly disables 4 OIDICATIIIG CONTACTOII 1j TCH HISTAIITANEOUS OVER CURRENT NID JLE CYL UNIT ...

Page 45: ...I 2 3 GN D 2 3 INTERNAL SCHEMATICS L 52 I 2 3 L I NE DEVICE NUMBER TRB 1 50 62 62X 62Y 86B 87B 94 DEVICE TRB 1 BLOCKING VALVE KC 4 RELAY T0 5 RELAY MG RELAY SG RELAY I BUS DIFF LOCI OL T RE AY BUS OIF F RI LAY TR 1 RELAY WING BER ORA NUM 184A 188 A 1 8 7 A 185 A 185 A 41 5 640 Z 93 H 10 8 1 8 4 A062 BREAKER TRIPPINR BUS DIF F PO S BREAKER FAILURE LINE BACKUP 86 J IOI B T T 62X I 1 62Y 3 i 9 87 B O...

Page 46: ...r 50 2 KC 4 performs this job 6 Now if breaker 1 fails for a fault on line A bus L is cleared This is accomplished by the bus L breaker failure timer which is energized by the line A relay 62X or 62Y contact When 62 operates 86B is energized to dump bus L For this sequence t he cur rent detector 50 1 selects the faulty breaker Note that the bus L timer eireuit in Fig 5 is the same as that used wit...

Page 47: ...6 L 2Z L 6J BKR 2 TRIPPING BKR 2 86_r TRIP LN c__ BKR 1 ss_r TRIP 86 z LNl _ BKR 3 SS_c BLOCK RECL LNT eKR 1 ss c BLOCK RECL LN r _ BKR 2 BS_r BLOCK RECL LNL ____ BKR 3 s s_r LINE A LN c __ CARRIER STO 8 6__c LINE B LNL__ CARRIER STOP DEVICE NEG 1 251 lC BUS R BKR 2 FAILURE DETECTION DESCRIPTION 62 y NO REQ D f7D I I BU 2 BAY 1 U m n 1 o m r w E l e c t r i c a l P a r t M a n u a l s c ...

Page 48: ...g of 0 2 or 2 amperes To change taps requires connecting of lead located in front ofthe tap block to the desired setting by means of a sere connection T r i p C ir c u i t Con stants Indicating Contactor Switch 0 2 amp tap 6 5 ohms d e resistance 2 0 amp tap 0 15 ohms d e resistance E N E R G Y R E Q U I R E M E N T S PHASE GROUND OVERCURRENT UNIT 60 CYCLES Ampere VA at VA at Range Tap Tap Value P...

Page 49: ... t uILOCI OECLOSII6 T 0 0 86LN 2 l t BLOCK RECLOSING T BlR 2 0 86LN 2 l t u LOCI RECLOUNG T au a L o u 1 LIIE A 86U 2 C ARIIEI T 0 STOP MU Z l IME I T CAlliER o STOP OEG 4 4 4 t MAKE COITACT If USED Wl11e SGR J2 BREAK COIIT lCT IF USED WITH ltC DEYICE MO REQ D TRB STAT I C TRIPPING UNIT iiiii 50 IC L1 CURREn DETECTOR 1 BKR 62 Tb 5 BREUER FAILURE TIMEI 1 BlR 62X MG TIMER AUX LINE 62Y SG TIMER AUX L...

Page 50: ... made at the factory Upon receipt of the relay no customer adjustments other than those covered under SETTINGS should be required 10 A c c e ptance C h e c k The following check is recommended to insure that the relay is in proper working order Phase Group Overcurrent Unit 1 Contact Gap The gap between the station ary and moving contacts with the relay in the de energized position should be approx...

Page 51: ... the periphery of the spring adjuster and rotating it The spring adjuster is located on the underside of the bridge and is held in place by a spring type clamp that does not have to be loosened prior to making the necessary adjustments Insert the tap screw in the minimum value tap setting and adjust the spring such that the contacts will close when energized with the required current The pick up o...

Page 52: ... j _ I 16 s i II l r PANEL CUTOUT I DRI LL I NG FOR SEMI FLUSH MTG P AIEL DR I LL I NG 01 CUTOUT FOR P IICWICTfOII NT FROIIT VIEW Fig 8 KC 4 in FT 41 Case 57 D 7C O J WEST I NGHOUSE ELECTRIC CORPORA T ION R I LAY I N STR U M I NT D I VI S I O N N IWAR K N J Printed In U S A w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 53: ...hould be contacted ment assembly and a molded bridge The frame serves as the mounting structure for the magnetic core The magnetic core which houses the lower pin bearing is secured to the frame by a locking nut The bearing can be replac ed if necessary without having to remove the magnetic core from the frame The electromagnet has two pairs of coils The coils of each pair are mounted diametricall...

Page 54: ...lable in the follolwing current ranges Range Taps 0 5 2 amps 0 5 0 75 1 0 1 25 1 5 2 1 4 1 0 1 5 2 0 2 5 3 0 4 0 2 8 2 3 4 5 6 8 4 16 4 6 8 9 1 2 1 6 10 40 10 1 5 20 24 30 40 The tap value is the minimum current required to just close the overcurrent relay contacts For pick up settings in between taps refer to the sec tion under adjustments CONTACTS The moving contact assembly in the over current ...

Page 55: ... value current INDICATING CONTACTOR SWITCH ICS Close the main relay contacts and pass suf ficient de current through the trip circuit to close the contacts of the ICS This value of current should be not less than 1 0 ampere nor greater than 1 2 amperes for the 1 ampere ICS The current should not be greater than the particula1 ICS tap setting being used for the 0 2 2 0 ampere ICS The operation indi...

Page 56: ...up of the relay for any other tap setting should be within 5 of tap value Ifsettings in between taps are desired place the tap screw in the next lower tap hole and adjm t the spring until the contacts just close at the desired pick up current INDICATING CONTACTOR SWITCH ICS Close the main relay contacts and pass suf ficient de current through the trip circuit to close the contacts of the ICS This ...

Page 57: ...ance Phase Relay IQTaiT IlM lftiC IT LMI CTL IT I IIITOI IATUIUIII Tl llf C Hm nn 11 1 I IIU TUT WITCI Sub 3 8 3 7A454 0 Fig 2 Internal Schematic of KC 2 with Tapped ICS IIITAIT t M IT IIHD CTL IT YUISnll t t r 1__ _ I_ IIT OUI M IT CTL IT IAIIITOI mT wnca S ub 3 862A789 O Fig 3 Internal Schematic of KC 2 Relay with 1 Amp ICS Unit 5 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 58: ...O NTACTOR SWITCH INTERNAL SCHEMATIC FRONT VrEW 0 Fig 4 Internal Schematic of KC 2 Relay with two Tapped ICS units I NSTANTANEOUS OVERCURREtlT LOWER CYL UNIT VAR I STOR SATURAT I NG TRANS FORMER CURRENT TEST JACK TEST SWITCH S ub 2 3 5 1 2 A 1 9 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 59: ... 29 4 5 2 43 27 2 8 1 35 35 8 8 1 5 38 3 1 4 8 2 41 29 2 8 2 5 44 27 2 0 3 47 25 1 4 4 53 23 92 2 1 04 45 6 2 3 1 1 4 1 3 2 4 1 2 36 2 0 5 1 3 33 1 2 6 1 4 3 1 1 0 8 1 7 27 0 6 4 1 26 43 2 1 6 1 5 40 0 9 8 1 6 37 5 9 1 7 34 4 12 2 0 3 1 35 16 2 2 28 20 10 1 9 39 45 1 5 3 6 36 40 20 5 8 34 35 24 7 8 3 1 30 30 10 5 29 27 40 17 5 27 25 Fig 5 Burden Data PF ANGLE 34 32 3 1 30 28 26 34 30 28 27 25 23 4...

Page 60: ...S 37 39 24 38 36 1 3 39 35 8 5 41 34 6 0 43 32 4 6 45 30 2 9 41 36 9 0 44 32 5 0 47 30 3 0 50 28 2 1 53 26 1 5 59 24 0 93 1 1 49 6 5 1 2 43 3 3 1 3 38 2 1 1 4 35 1 4 1 5 33 1 1 1 8 29 0 7 1 5 5 1 2 4 1 7 45 1 2 1 8 40 0 7 1 9 38 0 6 2 2 34 0 37 2 5 30 0 24 1 7 28 43 2 4 2 1 27 3 1 1 6 20 3 6 1 5 1 5 4 2 1 2 1 1 4 9 1 1 08 Fig 6 Burden Data POWER FACTOR ANGLE o 46 37 34 32 3 1 28 36 32 29 27 26 24 ...

Page 61: ... 30 z liJ 2 0 1 0 DROPOUT TO 5 C F PICKUP v V PICKUP I vv 1 0 80 OF PICKUP t _ vDROPOUr TO 0 OF PICKUP 2 r 1 4 6 8 0 1 2 1 4 16 18 20 MU LT I P L E S O F T A P VA L U E CU R R E N T 0 Fig 7 Maximum Pickup and Dropout Time Curves for the Phase and Ground Overcurrent Unit 629A576 Sub 3 9 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 62: ...I __ 3 188 I I 6 3 75 80 98 161 93 PA N E L LOC ATION S E M I FLUSH MTG 641 16 28 P ROJECT I O N MTG 250 DIA 4 HOLES FOR 6 35l 190 32 MTG SCREWS PAN E L C UTOU T 8 DRILLING F O R S E M I F LU S H M T G 1 0 25 4 2 0 50 8 5 7 0 7 9 0 2 0 Fig B Outline and Drilling FT 31 Case w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 63: ...w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 64: ...W E S T I N G H O U S E E L E C T R I C C O R P O R A T I O N RE LAY INSTR U M ENT DIVISION NEWARK N J Printed in U S A w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 65: ... w CJ 0 c z tn I lllft_ fi f 1 3 t R 078 H DISTA N C E R E LAY T Y PE K D 1 0 l A M P I C S IN TYP E F T 42 CA S E INTE R N AL SCHE M AT I C I1 n0 I3 I 2 I 1 I DIMlNSIONa INCHII CHASS I S OPERATED SHORT I NG SWI TCH 1 50 OHMS 1 ND I CATOR CONTACTOR SWI TCH _ D I STANCE UNi T UPPER UN I T RED HAKr E TERM I IAL w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 66: ...w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 67: ...stantaneous overcurrent unit consists of an induction cylinder unit capacitor varistor and a transformer The components are connected such that a contact closing torque is produced when the current exceeds a specified value INDUCTION CYLIN DER UNIT Mechanically the cylinder unit is composed of four basic components a diecast aluminum frame an electromagnet a moving element assembly and a molded br...

Page 68: ...ounting the adjustable stationary contact housing The stationary contact housing is held in position by a spring type clamp The spring adjuster is located on the underside of the bridge and is attached to the moving contact arm by a spiral spring The spring adjuster is also held in place by a spring type clamp 6 7 REAR V I E W 2 I c U J I T 3 I 0 O R I ll U N I T 4 I i D I CATII G CONTAC T O R Sl ...

Page 69: ...is produced The primary of the transformer is tapped and brought out to a tap connector block for ease in changing the pickup current of the relay The use of a tapped transformer provides approximately the same energy level at a given multiple of pickup current for any tap setting resulting in one time curve throughout the range of the relay BREAKER FAILURE SCHEMES USING THE KC 4 RELAY The followi...

Page 70: ... This is done for ecomony since the same tripping device 868 is energized regard less of which breaker fails Targeting of the parti cular failed breaker is accomplished by the ICS in the associated KC 4 in conjunction with the 62X and 62Y BFI contacts for that line The zener blocking diode inside each KC 4 connected to 4 terminal 50 2 isolates the multiple trip circuits of the KC 4 s from one anot...

Page 71: ...cheme BFI seal in is provided by the TX auxiliary in TD S The telephone relay coil TX in parallel with the TD S timer 62 is optionally used to seal in 62X and 62Y contacts When the KC 4 contacts and 62X or Y contacts are both closed both the timer circuit and TX are energized TX seals around 62X and Y so that only the opening of the KC 4 contacts can stop the timer This may be needed when 62X and ...

Page 72: ...f BFI seal in is needed it is easy to obtain with separate timers With a single timer auxiliary relays and blocking diodes must be added whose cost mitigates the timer savings BREAKER AND A HALF ARRANGEMENT Figure 4 show breaker failure protection cir cuits for a breaker and a half bus arrangement with one timer for each breaker The basic functioning of the scheme of figure 4 I S the same as for t...

Page 73: ...imer 62 delay expires lockout switch 86BF is energized Contacts of 86BF trip breakers 1 and 3 block reclosing on all 3 breakers and transfer trip lines A and B Some of these actions are redund ant for example a line A fault does not require re tripping of breaker l But none of these re dundant actions are detrimental Remember that transfer tripping of the remote end of the faulted line isn t reall...

Page 74: ...the TD 5 timer 62 86T is a contact of the lockout switch associated with the transformer differential relay Repeat this connection for each breaker which is adjacent to the transformer The 86T contact supervision insures that security is not reduced by the added connection If a transformer fault results in 86T tripping the 8 timer is energized and is stopped only when 52a opens This won t happen i...

Page 75: ...anels Other electrical connections may be made directly to the terminals by means of screws for steel panel mounting or to the terminal stud furnished with the relay for thick panel mounting The terminal stud may be easily removed or inserted by locking two nuts on the stud and then turning the proper nut with a wrench For detail information on the FT case refer to I L 4 1 076 ADJUSTMENTS AND MAIN...

Page 76: ...EG DEV NO TYPE FUNCT I O N TRB 2 ZENER TRIPPING U N I T 50 KC 4 OVERCURRENT DETECTOR 52 POWER CIRCUIT BREAKER 62 T D 5 BREAKER FAI LURE TIMER 62X AR A BKR FAI L INI T IATING AUX 62Y AR A BKR FAIL INITIATING AUX 86B W L BKR FAI L LOCKOUT AUX 94T lAR A T R I PP I N G AUX A HIGH THRESHOLD TYPE 4MS PICKUP A A WITH SUPERVISING LIGHT USE EITHER B6B CONTACT OR TRB 2 BLOCKING ZENER BUT NOT BOTH f OPTIONAL...

Page 77: ... 60 1 5 9 80 19 2 t t Voltages taken with Rectox type voltmeter J Degrees current lags voltage G t t P F ANGLE VA AT S AMPS 39 24 36 1 3 35 8 5 34 6 0 32 4 6 30 2 9 36 9 0 32 5 0 30 3 0 28 2 1 26 1 5 24 0 93 49 6 5 43 3 3 38 2 1 35 1 4 33 1 1 29 0 7 5 1 2 4 45 1 2 40 0 7 38 0 6 34 0 37 30 0 24 28 0 43 2 1 0 27 1 6 0 20 1 5 0 1 5 1 2 0 1 1 1 1 0 08 3 1 0 40 24 0 25 20 0 1 8 1 8 0 14 16 0 1 0 1 5 0 ...

Page 78: ...36 3 3 3 1 27 43 40 37 34 3 1 28 39 36 34 3 1 29 27 t t II VA AT S AMPS P F ANGLE 24 34 1 3 32 8 0 3 1 5 5 30 4 5 28 2 8 26 8 8 36 4 8 30 2 8 28 2 0 27 1 4 25 92 23 6 2 45 3 2 4 1 2 0 36 1 2 33 1 0 3 1 0 6 27 2 1 42 0 9 40 5 37 4 34 35 3 1 20 28 45 39 40 36 35 34 30 3 1 27 29 25 27 RATING OF THE OVERCURRENT UNITS PHASE GROU ND Range Continuous Rating Amperes One Second Rating Amperes t 0 5 2 5 1 0...

Page 79: ...ing the stationary contact is position 3 The sensitivity adjustment is made by vary ing the tension of the spiral spring attached to the moving element assembly The spring is adjusted by placing a screwdriver of similar tool into one of the notches located on the periphery of the spring adjuster and rotating it The spring adjuster is located on the underside of the bridge and is held in place by a...

Page 80: ... in FT 41 case 1 4 i s UPPlR CYL UIII f TWO Ill S E IE S FOI 250 w o c I I W I CATINQ CONTACTOR SJtlTCN tlBII L_ l A V no TVi w ____ rA HArt ous O ft l CURRtN Lt t i CYL 1 11 T 188A64o Fig 7 Internal Schematic of the KC 4 Relay in the FT 41 Case INSTANTANEOOS OVER CURRENT UPPER CYL IT TWO IN SERIES F 250 V O C INDICATING CONTACTO L r 1 SWITCH INSTANTANEOUS OVER CURRENT MIDDLE CYL UNIT INSTANTANEOU...

Page 81: ...nals in FT 41 Case 6 i s uPHR CYL U N I T TWO IN SERIES FOR 2SC V O C 11101C 4TING COIITACTOII SI ITCH I L 41 776 1J HtSTlNTlNEOUS OVER CURR 1H MIDDLE CYL UNIT UtSTANTANEOUS OVER CURRENT LOWEll C tl UN I T CHAS S I S OPEiiJ TEO SHORTING SWITCH RED H utDLE TE4T SWITCH CUIIRUT TEST JAC TERNIIIlL S U B 2 8 37A3 39 Fig 1 1 Internal Schematic o f the KC 4 Relay with Normally Closed Contacts in FT 4 1 C...

Page 82: ...W E S T I N G H O U S E E L E C T R I C C O R P O R A T I O F 1 R E LAY I N ST R U M E NT D IV I S I O N CORAL S P R I NGS F IL Printed in U S A w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 83: ...TANEOUS _ OYER CURRENT ___ J UPPER CYL UN i l 2 5 t rJ rJ E I t L t t J J aJ aJ l X z t ND I CAT I NO CONTACTOR SWITCH MII C DWG 4t Jfl 4 7 _ i NSTANTAMEOU5 OYER CIJRREM MI DDLE CVL U J J H4S rAHTAH 0U OVEi CURR tNi L l fti CYL UK a l I HASS I O ERAT J _ SHORT I j S I JC I RED MAMOU t t T s S ITCtt w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 84: ...w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 85: ... H EMATIC I STANTA EOU S OVE RCURREHT U P P R CY L U I n t i V A I TJ R CH A S S I S O P R A T E D 31i0 T I NG S j I TC fi rr T J 2 _ FRONT VIEW fDWG I NO I I S T A NTA E 0US OVERCUR RENT LOwER CY L JH I T S T U R A T i i G R A i FOt r ER C U R R ENT T E S T J l C K I I H DLE T EST Sw i TCH w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 86: ... w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 87: ... overcurrent unit consists of an induction cylinder unit capacitor varistor and a transformer The components are connected such that a contact closing torque is produced when the current exceeds a specified value INDUCTION CYLIN DER UNIT Mechanically the cylinder unit is composed of four basic components a diecast aluminum frame an electromagnet a moving element assembly and a molded bridge The fr...

Page 88: ...used for mounting the adjustable stationary contac t housing The stationary contact housing is held in position by a spring type clamp The spring adjuster is located on the underside of the bridge and is attached to the moving contact arm by a spiral spring The spring adjuster is also held in place by a spring type clamp R E A R V I EW 2 I c UN I T 3 I 0 O R I 13 U N I T 4 I N D I CAT I N G CONTAC...

Page 89: ...rque is produced The primary of the transformer is tapped and brought out to a tap connector block for ease in changing the pickup current of the relay The use of a tapped transformer provides approximately the same energy level at a given multiple of pickup current for any tap setting resulting in one time curve throughout the range of the relay BREAKER FAILURE SCHEMES USING THE KC 4 RELAY The fo...

Page 90: ...d KC 4 current detector but that all of these funnel into a single TD 5 timer This is done for ecomony since the same tripping device1 868 is energized regard less of which breaker fails Targeting of the parti cular failed breaker is accomplished by the ICS in the associated KC 4 in conjunction with the 62X and 62Y BFI contacts for that line The zener blocking diode inside each KC 4 connected to 4...

Page 91: ... S timer is dedicated to each breaker and b in this scheme BFI seal in is provided by the TX auxiliary in TD S The telephone relay coil TX in parallel with the TD S timer 62 is optionally used to seal in 62X and 62Y contacts When the KC 4 contacts and 62X or Y contacts are both closed both the timer circuit and TX are energized TX seals around 62X and Y so that only the opening of the KC 4 contact...

Page 92: ...unctioning of the scheme of figure 4 I S the same as for the single bus single breaker case First consider the breaker 1 failure detection 6 circuit as an example for a breaker adjacent to a bus 8r eaker failure timing is initiated not only for faults on line A but on bus L as well Auxiliary relay 62Z L in the Bus L clearing circuit provides 8FI to breaker failure schemes for breakers 1 4 and othe...

Page 93: ...F is energized Contacts of 86BF trip breakers l and 3 block reclosing on all 3 breakers and transfer trip lines A and B Some of these actions are redund ant for example a line A fault does not require re tripping of breaker 1 But none of these re dundant actions are detrimental Remember that transfer tripping of the remote end of the faulted line isn t really redundant since it performs the import...

Page 94: ...f the TD 5 timer 62 86T is a contact of the lockout switch associated with the transformer differential relay Repeat this connection for each breaker which is adjacent to the transformer The 86T contact supervision insures that security is not reduced by the added connection If a transformer fault results in 86T tripping the 8 timer is energized and is stopped only when 52a opens This won t happen...

Page 95: ...her electrical connections may be made directly to the terminals by means of screws for steel panel mounting or tg the terminal stud furnished with the relay for thick panel mounting The terminal stud may be easily removed or inserted by locking two nuts on the stud and then turning the proper nut with a wrench For detail information on the FT case refer to I L 41 076 ADJUSTMENTS AND MAINTENANCE T...

Page 96: ... RECLOSING T BKR 3 0 125V D C _ _ NE DEV NO TYPE FUNCTION DWG NO NO REO D TRB 2 ZENER TRIPPING UNIT 187A696 IILINE 50 KC 4 OVERCURRENT DETECTOR 188A640 1 BKR 52 POWER CIRCUIT BREAKER 1 LINE 62 TD 5 BREAKER FAILURE TIMER 3515AI7 1 BKR 62X AR BKR FAIL INITIATING AUX 3500A85 I LINE 62Y AR BKR FAIL INITIATING AUX 3500A85 I LINE 868 WL BKR FAIL LOCKOUT AUX 1 BKR 94T AR TRIPPING AUX 3500A88 IILINE HIGH ...

Page 97: ... 60 15 9 80 19 2 t t Voltages taken with Rectox type voltmeter fJ Degrees current lags voltage I t t P F ANGLE VA AT S AMPS 39 24 36 1 3 35 8 5 34 6 0 32 4 6 30 2 9 36 9 0 32 5 0 30 3 0 28 2 1 26 1 5 24 0 93 49 6 5 43 3 3 38 2 1 35 1 4 33 1 1 29 0 7 5 1 2 4 45 1 2 40 0 7 38 0 6 34 0 37 30 0 24 28 0 43 2 1 0 27 16 0 20 1 5 0 15 1 2 0 1 1 1 1 0 08 3 1 0 40 24 0 25 20 0 1 8 18 0 14 16 0 10 15 0 07 I ...

Page 98: ...6 33 3 1 27 43 40 37 34 3 1 28 39 36 34 3 1 29 27 t t I VA AT S AMPS P F ANGLE 24 34 1 3 32 8 0 3 1 5 5 30 4 5 28 2 8 26 8 8 36 4 8 30 2 8 28 2 0 27 1 4 25 92 23 6 2 45 3 2 41 2 0 36 1 2 33 1 0 3 1 0 6 27 2 1 42 0 9 40 5 37 4 34 35 3 1 20 28 45 39 40 36 35 34 30 3 1 27 29 25 27 RATI NG OF THE OVERCURRENT UNITS PHASE GROU ND Range Continuous Rating Amperes One Second Rating Amperes t 0 5 2 5 00 1 4...

Page 99: ...tationary contact is position 3 The sensitivity adjustment is made by vary ing the tension of the spiral spring attached to the moving element assembly The spring is adjusted by placing a screwdriver of similar tool into one of the notches located on the periphery of the spring adjuster and rotating it The spring adjuster is located on the underside of the bridge and is held in place by a spring t...

Page 100: ... Fig 8 Internal Schematic of the KC 4 Relay with Operation Indicator and Contacts to separate terminals in FT 41 case 14 IMSUIIUNEOUS _ flYER CURRENT UPPlR CVl UMI r INDICATING COMTACTOR SifiTCN l88A64o Fig 7 Internal Schematic of the KC 4 Relay in the FT 4 1 Case INSTANTANEOUS OVER CURRENT UPPER CYL I NIT INDICATING CONTACTOoo r SWITCH INSTANTANEOUS OVER CURRENT MIDDLE CYL UNIT INSTANTANEOUS OVER...

Page 101: ... Separate Terminals in FT 41 Case NO IM SE I ES FOR 25C V D C UID I CATING COHTACTOiil SWITCH I L 41 778 1 K MSTAIITAHEOUS OVER CURIIEU I DDLE cn uaiT HIST UTAHEOUS OYER CURRENT LOIIIER CYL UII IT CHASSIS OPERATED SHDn iHG SWHCH RED HJJII LE fEU SWITCH CUIIIEif TEST JACI lEbliiUL S U B 2 8 37A3 39 Fig 1 1 Internal Schematic o f the KC 4 Relay with Normally Closed Contacts in FT 4 1 Case 5 7 D 7 9 ...

Page 102: ...W E S T I N G H O U S E E L E C T R I C C O R P O R A T I O N R E LAY I N ST R U M E NT D I V I S I O N C O R A L S P R I N G S F L Printed in U S A w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 103: ...ve should be contacted ment assembly and a molded bridge The frame serves as the mounting structure for the magnetic core The magnetic core which houses the lower pin bearing is secured to the frame by a locking nut The bearing can be replac ed if necessary without having to remove the magnetic core from the frame The electromagnet has two pairs of coils The coils of each pair are mounted diametri...

Page 104: ...able in the follolwing current ranges Range Taps 0 5 2 amps 0 5 0 75 1 0 1 25 1 5 2 1 4 1 0 1 5 2 0 2 5 3 0 4 0 2 8 2 3 4 5 6 8 4 16 4 6 8 9 12 16 10 40 10 15 20 24 30 40 The tap value is the minimum current requir ed to just close the overcurrent relay contacts For pick up settings in between taps refer to the se c tion under adjustments CONTACTS The moving contact assembly in the ove r current u...

Page 105: ...value current INDICATING CONTACTOR SWITCH ICS Close the main relay contacts and pass suf ficient de current through the trip circuit to close the contacts of the ICS This value of current should be not less than 1 0 ampere nor greater than 1 2 amperes for the 1 ampere ICS The current should not be greater than the particulat ICS tap setting being used for the 0 2 2 0 ampere ICS The operation indic...

Page 106: ...up of the relay for any other tap setting should be within 5 of tap value If settings in between taps are desired place the tap screw in the next lower tap hole and adjust the spring until the contacts just close at the desired pick up current INDICATING CONTACTOR SWITCH ICS Close the main relay contacts and pass suf ficient de current through the trip circuit to close the contacts of the ICS This...

Page 107: ...nection of KC 2 Relay for Supervising the Distance Phase Relay IIITUTAIIM MIICIIIIIT LMI C fL IT tAlliTH IA ATI TIAII TilT III UIIU TilT ITCI Sub 3 837A45 4 0 Fig 2 Internal Schematic of KC 2 with Tapped ICS IIITAIT M IT LMI CTL IT fAIIITtl Sub 3 86 2A789 0 Fig 3 Internal Schematic of KC 2 Relay with 1 Amp ICS Unit 5 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 108: ...ATING CO NTACTOR SWITCH INTERNAL SCHEMAnC FRONT VIEW 0 Fig 4 Internal Schematic of KC 2 Relay with two Tapped ICS units I NSTANTANEOUS OVERCURREt1T LOWER CYL UN I T VAR I STOR SATURAT I NG TRANSFORMER CURREtlT TEST JACK TEST SW I TCH Sub 2 3 5 1 2 A l 9 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 109: ...9 4 5 2 43 27 2 8 1 35 35 8 8 1 5 38 3 1 4 8 2 41 29 2 8 2 5 44 27 2 0 3 47 25 1 4 4 53 23 92 2 1 04 45 6 2 3 1 1 4 1 3 2 4 1 2 36 2 0 5 1 3 33 1 2 6 1 4 3 1 1 0 8 1 7 27 0 6 4 1 26 43 2 1 6 1 5 40 0 9 8 1 6 37 5 9 1 7 34 4 12 2 0 3 1 35 16 2 2 28 20 10 1 9 39 45 15 3 6 36 40 20 5 8 34 35 24 7 8 3 1 30 30 10 5 29 27 40 17 5 27 25 Fig 5 Burden Data PF ANGLE 34 32 31 30 28 26 34 30 28 27 25 23 45 41...

Page 110: ...ES 37 39 24 38 36 1 3 39 35 8 5 41 34 6 0 43 32 4 6 45 30 2 9 41 36 9 0 44 32 5 0 47 30 3 0 50 28 2 1 53 26 1 5 59 24 0 93 1 1 49 6 5 1 2 43 3 3 1 3 38 2 1 1 4 35 1 4 1 5 33 1 1 1 8 29 0 7 1 5 5 1 2 4 1 7 45 1 2 1 8 40 0 7 1 9 38 0 6 2 2 34 0 37 2 5 30 0 24 1 7 28 43 2 4 21 27 3 1 16 20 3 6 1 5 1 5 4 2 12 1 1 4 9 1 1 08 Fig 6 Burden Data POWER FACTOIFI ANGLE o 46 37 34 32 3 1 28 36 32 29 27 26 24 ...

Page 111: ... L J 1 2 0 _ 1 0 I DROPOO r TO s 5 c F pICKUP v v PICKUP TO 80 OF PIC r vv KUP t DROPOUT TO 0 OF PICKUP 2 __ 4 6 8 0 1 2 1 4 16 18 20 M U LT I P L E S OF TAP VAL UE CU RRENT 0 Fig 7 Maximum Pickup and Dropout Time Curves for the Phase and Ground Overcurrent Unit 629A576 Sub 3 9 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 112: ...8 1 1 6 375 8 0 A 9 8 OCA 0 l61 93 P N E L L Tl N SEM I FLUSH MTG PROJECT I O N MTG l 250 OIA 4 HOLES FOR 6 35 190 32 MTG SCREWS PAN E L C UTO U T 8 DRI LLING FOR S E M I FLUSH M T G 1 0 25 4 t 2 0 50 8 5 7 0 7 9 0 0 Fig 8 Outline and Drilling FT 31 Case w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 113: ...w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 114: ...W E S T I N G H O U S E E L E C T R I C C O R P O R A T I O ir 1 R E LAY I N STR U M E NT D I VI S I O N CORAL S P R I N G S F L Printed in U S A w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 115: ...poses or for use in conjunction with an extender board S 3494A90GO 1 which permits access to the module test points for making measurements while the relay is energized The plug in feature is keyed to prevent the boards from being re inserted in the wrong location The overcurrent unit and timer modules have a scale plate and setting potentiometer mounted at the front of the module This permits cha...

Page 116: ...R FAI L U R E R ELAY_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Fig 1 Photograph front view with door open and cards out part way Jt r s t Fig 2 Photograph rear view with top cover off and rear door open 2 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 117: ...C Output Rel ay The output relay when used is the Westinghouse 0 high speed Type AR with 4 normally open contacts At least one normally open contact is connected to a terminal strip for tripping duty he relay driver circuit is located on the power supply module or breaker failure module O P E R A T I O N The overall operation can best be explained by referring to the d e schematic and logic diagra...

Page 118: ...imer fe eds a relay driver circu it located on the breaker fai l ur e logic module o r power s upply modul e The relay driver c onsi sts of a transistor base res istor input resi stor and a zener diode connected fr om emitter to collector to protect the transi stor from transients The output of the relay driver circuit is connec ted to a r elay coi l which operates four sets of c ontacts 4 C H A R...

Page 119: ...G L E 0 06 1 1 5 0 09 2 0 1 3 4 0 17 8 0 21 1 2 0 26 14 0 3 1 1 5 0 06 10 5 l 0 10 0 5 0 15 5 5 0 19 9 0 0 25 1 1 0 0 32 14 5 0 37 16 5 0 07 8 l 0 12 1 5 0 18 5 5 0 25 8 5 0 35 10 5 0 45 1 3 0 50 1 4 0 10 6 L 0 15 3 0 25 5 5 0 35 7 5 0 50 9 0 65 9 5 0 8 10 VOLT AMP ERES P F AT 5 AMP E R E S ANGLE 2 8 17 5 2 7 15 8 2 6 14 5 2 5 14 5 2 3 15 5 2 1 16 5 2 0 18 0 1 3 4 1 1 4 0 9 5 8 0 8 8 0 7 1 1 0 6 1...

Page 120: ...e applied a c current until the voltage at the test points falls to zero Ti mer Unit A timing check at the minimum and m aximum settings is recommended to insure that the timer module is in proper working order This can be done at the same time an overall test of the relay i s made Overa l l Test Refer to the logic drawing and test drawing Connect an 86 device between strip terminal 4 and negative...

Page 121: ...r clockwise until the 20 volts d e at the output drops to zero Adj u stab le T i mer Unit The c ircuit should be first check e d t o see that th ere is no component failure Repl acement of a defective compon ent may or m ay not disturb the dial calibration If it do e s repositioning of the dial knob may get the knob to track If not a n e w b lank scal e plate is required Energize relay and use a c...

Page 122: ... TIMES K _ 1 r t 1 MINIMUM OPERATING TIMES v t 2 4 6 8 10 1 2 14 16 MULTIPLES OF PICK UP VALUE Fig 3 Operating Time of Overcurrent Unit Module 18 20 5 3 8 1 2 it L 6 1 b CURRENT REDUCED TO t90 OF P U I 1 80 OF P u f _ J 1 0 2 4 6 8 10 12 14 16 18 20 Fig 4 Reset Time Curve of Overcurrent Unit 50 O F P U _ 0 0 OF P U 22 24 26 28 r 40 8 6 3A5 2 9 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 123: ...DE Z l 1 87A936HI6 I IN3050A Z2 849A487HOI I IN4747A I I r D IOD E I 1 2 0 1 3 837A6 92 H03 I I N 64 5 A __ L_l 3 l l CAPACITOR 013 C 6 84A6 6 1 H I O I 6 SMFO L _2 TC6 2 r l 1 Z l 1 _ 99c37 Gol J POW ER SUPPLY 6 7 1B 5 0 8 Fig 5 Power Supply Module Internal Schematic Dwg 8 9 9 C6 2 0 Fig 6 Power Supply Module Component Location 9 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 124: ... 9A430H03 2 629A4 3 0H05 I 29A531H42 2 762A679H02 4 762A679HOI I 629A 5 3 1 H 7 8 I 629A 531 H 5 6 2 629A 5 3 1 H52 I J84A763HBI I 629 A 5 3 1 H 78 I 8 4 8 A 8 5 1 H 0 2 I 849A 4 4 1 HO I I 1 8 6A797 HOG I 862A2 B BH OI I 6267088 531 0 1 2 I R E S I STORS TO B E 1 2 WATT z UNL E S S OTHER W I S E SPE C I F I E D J Fig 7 Phase Overcurrent Module Internal Schematic Dwg I R 3 I I R 2 I I c 3 I Fig 8 ...

Page 125: ... 629A53 1 H 78 I R5 R 6 R7 629 A 53 1t _ 6 2 R B 629A 53 H 52 I R 9 l 8 4 A763HBt I R I O 629A 5 3 I H 7 8 I TRAN S I STOR Q l 848A 8 51 H02 I Q2 84 9A441HO I Z E N E R 01 ODE Z I 1 8 6A797H06 I Z2 862Al88HOI I RE S I S T OR S TO BE 1 2 WATT 2 U N L E S S OT HER W I SE SPE C I F I E D Fig 9 Ground Overcurrent Module Internal Schematic Dwg 0 f 0 I C l I E R 3 R 2 N u F 0 5 M F O I 5 M FO tN 4 IN 64...

Page 126: ...As31H78 2 e2 K _j R I 9 R22 Rz5 s2 9A 5 3 1 H 5 6 3 I O K I Rz D R z3 R26 629As 3 t H 52 3 6 aK R 2 1 R6 R6 1 R 6 4 6 29A 5 3 1 H6 6 4 _ _ 2f K ___ _ 16 629A53 1 H 72 2 _ _ T R A N S ISTOR Q 5 _C __97 Z E N E R D I O D E _ l z4 ____ _ I I RESISTORS TO BE 1 2 WATT z to UNLESS OTHERWISE SPECIFIED 6 9 1B 0 0 4 Fig 1 1 Breaker Failure Logic Module r B F L w 0 0 Ill G t D Fig 12 Breaker Failure Logic M...

Page 127: ...R25 629A531H72 R6 R35 R36 R42 R69 629A53IH66 R4 R7 R28 629A531H56 R5 RB R29 629A531H52 TRANSISTOR Q l Q 2 Q 7 B48A851H02 ZENER DIODE 5 H I85A212H06 l2 185A797H08 Fig 13 Breaker Failure Logic with Provision for 52a Contact Input and Seal ln N l u L i o 0 I w Fig 14 Breaker Failure Logic Module Component Location I I L 41 776 4E REO 3 I 3 3 3 3 5 3 3 3 3 3 REF 047 MFD 047 M F O IN645A 4 71 82 K 47 K...

Page 128: ...0A _ R _ S5Y S T Y 5312 00fiGOI TIME RANGE 05 4 S E C 5312 006G02 1 1 0 S E C 53tiOOISG03 5 9 4 4 0 S E C 3 SEE TABLE I FOR BOARD ASS I r f _f Fig 15 Timer Module Internal Schematic I I I I I f I I a I I I D 0 r Tr 1 _j I I I I I I I I I Fig 16 Timer Module Component Location 6 9 1B0 3 l 6 9 1 B0 3 2 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 129: ... 629A 531H 2 ltll TO Rl3 629A531H66 300 5K 4 7K 10 27K f 1 t T SF OP ct _ _ TRI 629A37_ HOI I 5 0 5 1 ALL RESISTORS TO BE I WATT 2 UNLESS OTHERWISE SPECIFIED 6 7 1B 9 0 3 Fig 1 7 Trip Module for Thyristor Output Internal Schematic t t 0 0 I 00 oo l C J IJ cnO 1 0 Lf IJ 1 a I 0 0 0 0 0 1 0 I C J 1 0 I w T w a 0 a a a a 1 0 1 0 a Lf r w 4 2 0 1 1 0 Lf 14 9 2 0 2 1 2 CJ 00 v J m f 2 2 Q r 2 10 C J IJ...

Page 130: ...l R68 629A531H72 T RANSISTOR 0 5 0 6 0 7 848A B51 H0 2 3 08 8 3 7A617HOI Z E H E R DIODE Z l z 165A212 H06 Z 2 Z 5 186A1 97H06 Z 6 187A936 H 1 7 RESISTORS TO BE 1 2 WATT 2 UNLESS OTHERWISE SPECIFIED REF 0 4 7 MFO IN6 4 5 A 4 7 K 02 K I 0 K 6 8 K 27 K 47 K I N 3417 2N3589 t N 3 I N 9 5 7 1 IN3 5 8 6 9 1B 4 19 Fig 19 Breaker Failure Logic and Relay Driver Module Internal Schematic N l o N l l lfl ry...

Page 131: ...DUL E Tf 1 i D t Q j J I r D I QJ CTU Cl f R 1 i T r u 1 I 1 _ __ __ _______ __ __ ___c TI I ER l Fig 2 1 Three Input Timer Module Internal Schematic 0 0 0 OH N I 0 oO 0 0 a a Fig 22 Three Input Timer Module Component Location Drawing I L 41 776 4E 6 9 1B 3 7 2 I 6 9 1B 3 7 3 17 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 132: ... IN 645A R E S ISTOR R I R2 R 3 6 2 9 A 5 3 1 H I9 3 2 K R4 629A 5 3 1 H 5 6 I 10 K TRANSISTOR 0 1 0 2 8 3 7A 61 7 HO I 2 2 N3589 ZENER DIODE t l Z 3 1 8 7A l 3 6 H I 7 2 I N 30 5 0 B 2 8 4 9 A 4 8 7 H OI i IN4747A L_ __ POWER SUPPL_ Y_ _ I 8 9 9 C 6 4 2 GQ I REISISTORS TO BE I 2 W 2 UNLESS OTHERWISE SPECIFIFD Fig 23 Power Supply and Relay Driver 0 I 6 9 1B 2 1 5 D r eo CTl 0 a 8 9 9 C6 6 3 Fig 24...

Page 133: ..._ 76 4 E POS NEG I E I CAPACITOR Cl CZ C3 CTU CTu 01 DE 0 1 02 D 05 06 03 08 07 R E S I STOR Fig 25 Timer with High Input T reshold Voltage Fig 26 Timer with High Input Threshold Voltage Module Component Location 7 16 B 3 4 6 I r 1 7 16 B 3 4 9 1 9 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 134: ...TYLE RI R63 R64 TERM Z 11 12 TERM 5 6 205C268GOI 629A531H72 4710 100 TO 140 V 15 TO 20 V 205C268G02 629A531H60 15 K 38 TO 60 V 15 TO 20 V TABLE I 7 1 8B6 4 4 Fig 27 Breaker Failure Logic with High Input Threshold Voltage and BMS Seal In Time Delay 7 1 8B6 4 i Fig 28 Breaker Failure Module Component Location High Input Threshold Voltage and Bms Seal In Time Delay w w w E l e c t r i c a l P a r t M...

Page 135: ...___j IN645A 1 I O K I 6 8 1 27 K 4 7K _J 82 K rso n 3W 1 2N3417 I j 2N3645 1 3 862A288HOI IN3688A __j k t j Z4 l85A212H06 IN3686B I r 5 186A797H06 I IN957B ____ ALL RESiSTORS TO BE 112 W 2 UNLESS OTHERWISE SPECIFIED TABLE A Ci g uj 0 I I I T u I I II L I 0 I r0 N t I I r er I Cr l I I I st t o I I JsEE TABLE A d GROUP TIMING FOR Tr 202C946GOI 5 0 0 20 2C946G02 3 0 0 Fi g 29 Relay Enabling Logic Mo...

Page 136: ...C 1 5 TO 2 0 VDC 38 TO 60 VOC 15 TO 20 VDC 14 POS NEG 1 1 12 CAPACITOR S YLE REO Cl C2 C4 C7 849A437H04 4 C5 763A219H 18 1 DIODE Dl 02 07 09 837A692H03 4 RESISTOR R l R63 R64 SEE ABLE 1 3 8 7 SEE TABL I 3 R3 R9 18 SEE TABLE I 3 R4 R IO R25 6 9A 31H56 3 H6 R l2 R27 629A53 1H52 3 R36 R41 42 R53 629A53 1H66 4 TRANSISTOR 01 02 05 848A85 H02 3 ZENER DIODE Q 165A212H06 3 Z2 Z4 Z7 862A 288H07 3 Z9 837A69...

Page 137: ... RM I All CIU BDS B L_ _ I I P o 1 6 I _ __jjd AHD 1 1 _B U ffER r __j 1 l g 5 I I L ORIV R L_ I L 1 Fig 33 Logic Dw g of SBFU with Thyristor Output TRIP 2 0 1 C l 6 9 f tt m 1 D l c 1 f f n n o n c f D l o m m o r c o m o m m E l e c t r i c a l P a r t M a n u a l s c ...

Page 138: ... o p j I I TABLE I _ Io__ _ _ IA Ic I TO 4 AMP 5313011G01 __j 5 TO 1 AMP _ 5309033 CI6 1 To a A MP smo1 1 Goi I t i Fig 34 Logic Dwg of SBFU with Thyristor ond Three Input Timer 81 2 11 1 POS 2 0 1 C6 8 4 t 0 m V c V t lo t n n 0 n c t 0 m m 0 o r c 0 m 0 m r o E l e c t r i c a l P a r t M a n u a l s c ...

Page 139: ... I F I BREA RK E E fv A16 I tR LOG 8 S 201C423 t T I TLES 0 STY LE NO T IMER r 12Q06GOI I A 1 C _ SEE TABLE J 10 SEE TABLE I 1 I LCL RCT J L T_ O U TP UT 3 H 3L_ I IN PUT ADJU T I IDRIVER FFE_ r DRIVER _TIME J _ _j _j_ _ L _ _ _ _ Fig 35 Logic Dwg of SBFU with Contact Output POS TRIP l c u o o N 0 0 u N l l U I o u I ull o O 2 0 l C 4 4 3 1 tt m Cl D l TT c Cl 1 1 n n o n c 1 D l o m m o TT r c o ...

Page 140: ...09 RB S 120100 POWER SUPPLY 671 8 108 48 V O C 1 8K S 899C378G02 899C620 6718961 F 1RE l K C A F r t 1 LOG 6918419 S ZOIC42 3GOI 6918420 10 671 8960 5 5309033016 6718962 1267287 1 2 5 V D C Fig 36 Logic Dwg of SBFU with Contact Output and Three Input Timer PART OF TERMINAL BLOCK PART OF TRIP M 1 j c D U o oO oUi c J o O D o t 2 0 Ute o J D t l or O c l e U 0 2 0 1 C5 0 9 4 tJ m Cl DJ c Cl 4 4 n Q ...

Page 141: ... S TIMER SEE TABLE II IA IC K I SEE TABLE I 10 J I SEE TABLE I TABLE ll Sl YLE MO 05 11 SEC 5312008007 t 1 0 SEC 5312 006 1 I t r J 0 R _ I I I I I ___ y T ERMINAL BLOCK H t JI 31 SAR OR ARS SCHEMATIC COMPONENT LOC 6918372 6918373 6718945 6718 11 1 6718960 671896 2 RAN G E Io 5 TO 2AMPI 5309033616 I TO4AMP 2 TOBAMP IA l i e 5313012GOI 5313DI2G02 5313012G03 J 52 SAP0P AP _JJ_ L Do 0 D aO o u o o a ...

Page 142: ...A J l 1 7 N E U T R A L P H A S E B I J11 l TERMINAL BLOC PtJ S J I 3 0 8 K R FAILURE L O G I C O U T P U T 20 v o c 8 6 T I ltllw 1 E ______j I t 1 _1__ ___ _ _ _ _ _ _ _ _ oUTPm _2 DRI V R b _l_i 3 2 TIMER OUTPUT I zo v o c _ _ _ ______ Gj J I 3 I OVER C U R R E N T U N I T O U T P U T A J l 2 1 4 I N P U T R A NGE t O O TO 1 40 V D C IVER BUFFER 3 L_ _ _ _ _ __ _ _ _ __ _ _El Jt 0 i S E E F I G...

Page 143: ... 2 1 4 15 1 2672 9 315 0501328H7 4 15 4 08cs4SGO I BREAKER CA LU R E COG C 7 8 8 6 4 4 v hh r o 1 i O O OHMS 5 1 O H M S 1 5 1 OHM S 3 5K I I F 2 0 5 C 26 B G 03 7 1 8 8 6 4 5 1 1 S E E T A B L E I 1 T I M E R SE E TABLE 2 7 1 6 8 3 4 6 T O I T 1 7 G 7 1 6 B 3 4 9 _ 9 4 5 S E E TABLE I T A B L E t r c r BREAKER fAILURE LOGIC SE E TABLE 2 T I M E R 05 4 S E C SE E TABLE 2 R A N G E 2 6 0 1 I 5 2 AM...

Page 144: ...C 6 6 3 BREAKER FAILURE LOGIC 7 1 8 8 7 5 9 2 0 5 C 3 6 4 G 0 3 7 1 8 8 7 6 5 _m T I T L E S S C H E M AT I C COM P O N E N T 1 1 5 r NO 7 1 3 4 T ON SEE TABLE 2 7 1 6 8 34 9 S E E 28 L E I I A l C 1 6 7 1 8 9 4 5 S E E T A B L E 1 6 7 1 8 9 6 1 TABLE I RAN G E I 0 MP 5309 0 3 3 G I 6 I T04 AMP 5 3 0 9 D 3 3 G I 7 2 T0 8 A f I 5 3 0 9 D 3 3 G I 8 4 T016 A 1 I 5 3 09 0 3 3 G I 9 tAjtc 531 3 0 1 2 G...

Page 145: ...NG 3 BLOCK M A NUAL CLOSING 4 KEY TRANSFER TRIP TRANSMITTER S TO TRIP REMOTE BREAKE R AND BLOCK RECLOSING 5 STOP BLOCKING C A R RIER L E G E N D 5 2 C I RCUIT BREAKER 62 S B F U 6 2 CONTACT OR T R AN S ISTOR THAT APPLIES POSITIVE TO SBFU INPUT I N IT I ATED BY PRIMARY RELAYING SYSTEM COINCIDE NT WITH TRIP 6 2 Y CONTACT O R TRANSISTOR THAT APPLIES POS I T I V E TO S B F U I NPUT I N ITIATED BY BACK...

Page 146: ...N LINE OR TRANSFORMER 62 1 8 SINGL E BREAKER SCHEME _1 te _ te 62 2 2 Io Ic 62 2 8 TRANSWJSSION LINE OR TRANSFORMER __ iJ c O J l 1 SBFU FOR A BREAKER r 2 52 2 BACKUP f RELAYS f L_ __f A OO SPP C APACITORS AT POINTS SHOWN UNLESS INCLUDED FOR OTHER EQUIPMENT CLOSER TO c r s Fig 42 External a c Schematic for SBFU A B c 1 PRIMARY RELAYS 2 0 1 C 8 4 6 w w w E l e c t r i c a l P a r t M a n u a l s c ...

Page 147: ...AND 86 LOGIC w BUFFER I _ _ 1 P _ O _ _ _ _ _J D C SUPPLY SYMBOLS 32 PIN CONNECTOR D TERMINAL BLOCK APPROXIMATELY 20 VDC WHEN OUTPUT IS PRESENT Fig 43 Test Connection for Type SBFU Relay __j IJd I n t 0 1 1 Fig 44 Outline and Drilling Plan for the SBFU Relay RATED D C TRIP VOLTAGE 7 15 B 9 3 3 2 0 1 C l 3 2 33 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 148: ...w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 149: ...w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 150: ... W E S T I N G H O U S E E L E C T R I C C O R P O R A T I O N R E LAY I N ST R U M E NT D IV I S I O N CORAL S P R I N G S F L Printed in U S A w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 151: ...o a tap block located on the front of the relay Each transformer has three taps which cover the range of pickup The secondary of the transformers are con nected to the input of the plug in detector module where the phase and ground signals are connected to separate pickup level adjustments located on the front of the module A comparator circuit consists of a plug in operational amplifer whose outp...

Page 152: ...detector The breaker failure timer controls the fault detector so that after it times out the overcurrent signal if present is connect1 d to the level detector This arrangement keeps the overcurrent input transformer load at a low level This permits f st reset of the secondary voltage of 3 ms or less even at very high multiples of pickup current By use of an additional timer called the control tim...

Page 153: ...current is reduced to zero or up to 95 of pickup current Continuous rating is 10 amperes One second rating is 250 amperes The accuracy of the pickup setting is 5 over the full range and 10 from 20 to 55 C Since the setting is continously adjustable closer setting accuracy can be obtained by using a current source and a precision ammeter I L 41 776 5A CAUTION Since the tap block connector screw car...

Page 154: ...tacts will safely close 30 amperes at 250 Vde and the seal in contacts of the ICS will safely carry this current long enough to trip a cir cuit breaker SETTINGS OVERCURRENT DETECTOR The pickup of the overcurrent unit is obtained by means of a tap screw and tap block in conjunc tion with the tap multiplier knob setting located at the front of the overcurrent unit module This per mits a continuous a...

Page 155: ...L 41 776 5A resistor that is inserted on tripping and the over current fault detectors are set below the resistor current the additional time for this interruption must be included A secure margin for the SBF 1 is 2 cycles 33 ms INDICATING CONTACTOR SWITCH ICS Connect the lead located in front of the tap block to the desired setting by means of the con necting screw When the relay energizes a 1 25...

Page 156: ...s with relay terminal 9 positive Connect an electronic 6 timer to the relay so that the start input is con nected to relay terminal 9 through a voltage divider if necesary The stop input should be con nected to the bottom test jack on the timer module The common should be connected to ter minal 8 The test timer start input should be ad justed to commence timing on a positive going slope and to sto...

Page 157: ...the relay if the relay has been taken apart for repairs or the adjustments have been disturbed This procedure should not be used unless it is apparent that the relay is not in proper working order Overcurrent Detector Refer to Fig 7 and 8 or 9 when replacing com ponents If a new module is inserted it will require calibration of the dial plate Other replacement parts such as a transformer or certai...

Page 158: ...see that the contacts close at rated tap value current The indicating target should drop at or just prior to the contacts closing The targer should drop freely If the target does not drop or does not reset it may be necessary to remove the cover and bend the 8 0 tab on the spring that supports the target TROU BLE SHOOTI NG The components in the SBF 1 relay an operated well within their rating and ...

Page 159: ... X I post tion I L 41 776 5A a With 0 4 amp ac current flowing apply rated relay voltage Measure voltage at terminal 5 of I C I to be 6 4V Now increase the current until the output relay operates The voltage should now read approx 5 4V At this point the voltage at terminal 4 should measure 6 4V The voltage at printed circuit board terminal 3 should measure 23 5Vdc before the output relay operates ...

Page 160: ...rrent 4 5A 5 0A VA 23 28 O H M S 01 1 0 1 1 P F Angle 36 1 8 Saturated Burden Current Lagging Voltage CLOSED 4 5A 5 0A 1 6 20 008 008 5 4 OPEN CLOSED 1 5A 1 5A 0 5A 5 0A 53 2 1 33 2 2 23 08 1 5 09 63 25 20 27 1 5 3 4 5A PICKUP OPEN CLOSED 4 5A 5 0A 4 5A 5 0A 63 75 50 60 03 1 03 024 024 36 36 1 5 1 5 4 5 3 1 3 5A PICKUP OPEN CLOSED 1 3 5A 5 0A 1 3 5A 5 0A 1 6 28 1 5 20 008 0 1 1 008 008 9 1 8 3 4 T...

Page 161: ...CT RATINGS I L 41 776 5A I NTERRUPTING RATING CONTACT CIRCUIT TRIP CARRY RATING RESISTIVE INDUCTIVE RATING RATING CONTINUOUS L R 005 48Vdc 30 Amps 3 Amps 3 75 Amps 1 75 Amps 1 25 30 3 5 35 250 30 3 25 1 5 0 TABLE 5 X RELAY CONTACT RATINGS CONTACT CIRCUIT TRIP CARRY RATING RATING RATING CONTINUOUS 48Vdc 30 Amps 3 Amps 1 25 30 3 250 30 3 1 1 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 162: ...B TRANSFO RMER TA Fig 1 Photograph of SBF 1 Relay without case with four overcurrent input Front view 12 SEAL I N RELAY X I CS I ND I CAT I NG CONTACTOR SW I T CH w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 163: ... right oblique I L 41 776 5A POTENTI OMETER PA POTENTI OMETE R P C POTENTI OMETER P G POTENT I OMETE R P B T RANSFORMER TG RES I STO R RS 13 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 164: ...M TERMINAL I I TO TERMINAL 1 2 L R LC a RC DENOTE LEFT HAND RIGHT HAND LEFT CENTER a RIGHT CENTER POSITIONS REF DWG 2 W RESISTORS 1326DI9 DET AILED SCHEMATIC 1 326D31 4 OVERCURRENT UNITS WIRING 1 326083 3 OVERCURRENT UNITS WIRING VOLTS OC 48 1 2 5 250 RA 900 1 3150 0 7100 1 0 Fig 2 Simplified Internal Schematic SBF 1 Relay RS 200 1 IOOO n 2500 1 Sub 4 Owg 775881 3 w w w E l e c t r i c a l P a r t...

Page 165: ...FROM TERM 3 OF 4 OVERCURRENT DETECTOR MODULE RATED VDC 52 a i4 l I I I I 1 13 I I I I TIMER AND OUTPUT MODULE PI IS PAN E L MOUNTED 7 TO X RE LAY 10 REPLACED BY J FOR GROUPS I 6 0 FiQ 4 Internal Sch1 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 166: ...O V 0 3 7 A 69 3rl l 4 matic of Timer Module 18 1454C 8 1 G02 125 VDC CAPAC T O R C J C 2 C l Dl J U D l 2 03 1 A ox t N T Cr T I C J JUMPER J i 2 P 0 T P 2 P I TRANS I ST0R Ql Q2 3 4 S 7 R E S I STOR R4 6 9 J 2 1 5 2 5 R2 1 4 R 1 1 6 R 7 B I 0 1 1 2 2 RS 1 3 2 4 RJ 1 1 R20 R26 2ci R27 R21 R l 9 R29 R23 R 8 30 ZENER Z A z 1 2 DESCRI P T I O N S T Y L E 11 1 2 70UF 200V I B 8A669H05 J o JOOUf JSV 8...

Page 167: ...P1 2 a Pl 3 I 14 Fig 5_ Component Location for Timer Module 48 or 125Vdc rated relay I L 41 776 5A 351 7A 76 19 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 168: ...20 Fig 6 Com ponent Locatton for Timer Mod I u e 250Vdc rated relay WHEN USED 351 7A 77 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 169: ... l J l 7 5JA 6 o 2 V 1 h 2 o f Qf rl C 17 2A J J CJ v 6 4 9 1 5 1 OrlJ2 DESCRIPTif N STYLE NQI soo o 2 oow 10 S48A778H04 IO OK 1 2 5W 10 836A635H14 DESCRIPT10N STYLE NQI 1000 OHM COIL 204C556H05 OESCRIPTI0N STYLE N0 ZNR 1 431 3509A31H03 CAPAC T R C DIODE 023 24 o 1 2 3 4 s 6 1 8 13 14 15 16 17 18 20 21 22 l N T CI T I C I Jlr IPER J J TRANS I STO Q l 2 RESl ST R R l 9 R2 1 23 R22 R l 8 24 R 7 R S ...

Page 170: ...351 7A 78 Fig B Component Location tor 3 Current Input Overcurrent Detector Module 2 2 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 171: ...I L 41 776 5A 351 7A 79 Fig 9 Component Location for 4 Current Input Overcurrent Detector Module 23 w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 172: ...TAP MULTIPLI ER l l I TO RH CON TACT OF AR RELAY I J L _ QJ_ 2 4 s a lGND TO RH CONTACT I OF AR R E LAY I t i 9 Qg _j LO BOUNCE SWITCH TO TEST TIMER RATED START VDC TO TEST TIMER COMMON NOTE TO TEST FOR OVERCURRENT UN I T PICKUP JUMPER TIMER BOARDTEST POI NT TP6 AND TP7 BEFORE ENERGIZING RELAY TEST BKR FL TIMER IN SI MILAR MANNER Fig 10 Test Diagram for SBF 1 Relay 1479829 w w w E l e c t r i c a ...

Page 173: ...SBF 1 RELAY FOR BREAKER 52 2 I l iB WHEN 62 1 I 1 I I I t _ R L K A H p 62 1 Io L _ A y 7 p SPP t l w EU t S P P SURGE PROTECTION CAPACI TORS TO BE USED WHEN SURGE VOLTAG E MAY EXCEED 2500 VOLTS PEAK SINGLE BREAKER SCHEME TRANSMISSION LINE OR TRANSFORMER LEGEN D DEY DESCRIPTION 52 I CIRCUIT BREAKER 62 j SBF 1 BREAKER F AILURE RELA Y 7758813 1326019 r u w E l e c t r i c a l P a r t M a n u a l s c...

Page 174: ...ION 52 CIRCUIT BREAKER 62 SBF 1 BREAKER FA I LURERELAY 7758813 1326019 62X 62Y BREAKER FAI LURE I N I T I ATE CONTACTS 86BF BREAKER FAILURE LOCKOUT RELAY 86TI TRANSFORMER LOCKOUT R ELAY TYPICAL86BF AND OR R E L AY AUX F U NCTIONS I TRIP BREAKERS CONNECTED TO SAME BUS SECTION 2 8LOCK ALL AUTOMATIC RECLOSING 3 BL0CK MANUAL CLOSING 4 KEY TRANSFER TRIP TRANSMITTERS TO TRIP REMOTE BREAKERS AND BLOCK RE...

Page 175: ... 5 5 6 a E XT E RN A L __ __H I TOOTH WASH E R lr SMA LL EXTERNAL TOOTHED WASHERS 4 375 1 1 1 1 3 190 32 SCREW SPACERS FOR THIN PANELS 516 13 1 1 64 1 16 2 8 1 031 1 031 CUTOUT 26 19 26 19 26 19 26 19 PANEL DRILLING OR CUTOUT FOR PROJECTION MTG FRONT VIEW Fig 13 Outline and Drilling Plan for SBF 1 relay in the Type FT 32 Case Dwg I L 41 776 5A 5707903 2 7 w w w E l e c t r i c a l P a r t M a n u ...

Page 176: ...w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 177: ...w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Page 178: ...W E S T I N G H O U S E E L E C T R I C C O R P O R A T I O N R E LAV I N S T R U M E NT D I V I S I O N CORAL S P R I N G S F L Printed in U S A w w w E l e c t r i c a l P a r t M a n u a l s c o m ...

Reviews: