background image

INSTA L L  A Tl ON 

• 

Westinghouse 

1. L.  41-l33.3E 

OPERATION 

• 

MAI N TENANCE 

INSTRUCTIONS 

TYPE  IRV  DIRECTIONAL  OVERCURRENT  RELAY 

FOR  PHASE  PROTECTION 

C A U T I O N  

Before  putting  relays  into  service,  remove 

all  blocking  which  may  have  been  inserted  for  the 

purpose  of  securing  the  parts  during  shipment,  make 
sure  that  all  moving  parts  operate  freely,  inspect  the 
contacts  to  see  that they are  clean  and close  properly, 

and  operate  the  relay  to  check  the  settings  and 

electrical  connections. 

A P P L I CA T I ON 

These  relays  are  phase  directional  overcurrent 

relays  which  are  used  for  the  protection  of  trans­
mission  lines  and  feeder  circuits.  Both  the  time­

overcurrent  and  instantaneous  overcurrent  units  are 

directionally  controlled. 

CONST RUCTION  AN D  O P E RATION 

The  Type  IRV  relay  consists  of  a  directional 

unit 

(D), 

an  auxiliary  switch (Cs-1), a  time-overcurrent 

unit  (CO),  an  instantaneous  overcurrent  unit  (I),  an 
instantaneous  overcurrent  unit  transformer,  and  two 
indicating  contactor  switches  (ICS/I)  and  (ICS/T). 

The  principle  component  parts  of  the  relays  and  their 
location  are  shown  in  Fig.  1  and  2. 

T i me- O v ercurrent  U n i t  ( C O )  

The  electromagnets  for  the  types  C0-5,  C0-6, 

C0-7,  CQ-8  and  C0-9  units  have  a  main  tapped  coil 

located  on  the  center  leg  of  an 

"E" 

type  laminated 

structure  that  produces  a  flux  which  divides  and  re­
turns  through  the  outer  legs. 

shading  coil  causes 

the  flux  through  the  left  leg  to  lag  the  main  pole  flux. 
The  out-of-phase  fluxes  thus  produced  in  the  air  gap 

causes  a  contact  closing  torque. 

The electromagnet for the type C0-2 and C0-11  units 

have  a  main  coil  consisting  of  a  tapped  primary  wind­

ing  and  a  secondary  winding.  Two  identical  coils  on 
the  outer  legs  of  the lamination  structure  are  connect­
ed  to  the  main  coil  secondary  in  a  manner  so  that  the 
combination  of  all  the  fluxes  produced  by  the  electro­
magnet  result  in  out-of-phase  fluxes  in  the  air  gap. 

The  out-of-phase  air  gap  fluxes  produced  cause  a 

contact  closing  torque. 

SUPERSEDES  I.L.  41-133.3D 

'Denotes  change  from  superseded  1ssue. 

I n d i c at i ng  Co ntactor S w i t c h   U n i t s  ( IC S/1  and  I C S/T) 

The  d-e  indicating  contactor  switch  is  a  small 

clapper  type  device. 

magnetic  armature,  to  which 

leaf-spring  mounted contacts  are attached, is  attracted 

to 

the  magnetic  core  upon  energization  of  the  switch. 

When  the  switch  closes  the  moving  contacts  bridge 
two  stationary  contacts,  completing  the  trip  circuit. 
Also during  this  operation  two  fingers  on  the  armature 

deflect  a  spring  located  on  the  front  of  the  switch, 
which  allows  the  operation  indicator  target  to  drop. 

The  front spring, in  addition  to holding  the  target, 

provides  restraint  for  the  armature  and  thus  controls 
the  pick-up  value  of  the  switch. 

D i recti onal  U n i t  { D )  

The  directional  unit  is  a  product  induction  cylin­

der  type  unit  operating  on  the  interaction  between  the 
polarizing  circuit  flux  and  the  operating  circuit  flux. 

Mechanically,  the  directional  unit  is  composed  of 

four  basic  components: 

die-cast  aluminum  frame, 

an  electromagnet,  a  moving  element  assembly,  and 

molded  bridge. 

The  frame  serves  as  the  mounting  structure  for 

the  magnetic  core.  The  magnetic  core  which  houses 
the  lower  pin  bearing  is  secured  to  the  frame  by  a 
spring  and  snap  ring.  This  is  an  adjustable  core 

which  has  a  .025  inch  flat  on  one  side  and  is  held  in 
its  adjusted  position  by  the  clamping  action  of  two 

compressed  springs.  The  bearing  can  be  replaced,  if 
necessary,  without  having  to  remove  the  magnetic 
core  from  the  frame. 

The  electromagnet  has  two  series-connected 

polarizing  coils  mounted  diametrically  opposite  one 
another, two  series-connected operating  coils  mounted 
diametrically  opposite  one  another;  two  magnetic  ad­

justing  plugs;  upper  and  lower  adjusting  plug  clips, 

and  two  locating  pins.  The  locating  pins  are  used  to 

accurately  position  the  lower  pin  bearing,  which  is 

mounted  on  the  frame,  with  respect  to  the  upper  pin 

bearing,  which  is  threaded  into  the  bridge. The elec-

EFFECTIVE  MAY  1971 

www 

. ElectricalPartManuals 

. com 

Summary of Contents for IRV

Page 1: ...hase air gap fluxes produced cause a contact closing torque SUPERSEDES I L 41 133 3D Denotes change from superseded 1ssue Indicat i ng Contactor Switch Units IC S 1 and ICS T The d e indicating contac...

Page 2: ...g Rectifier 0 03 MFD Capacitor D Unit CSl Unit ICS I CO Unit ICS T Fig 1 Type IRV Relay Without Case Front View Fig 2 Type IRV Relay Without Case Rear View 1 23 MFD co Unit m a a m r E l e c t r i c a...

Page 3: ...resulting in one time curve throughout the range of the relay Across the secondary is connected a non linear resistor known as a varistor The effect of the varis tor is to reduce the voltage peaks ap...

Page 4: ...it breaker The indicating contactor switch has two taps that provide a pickup setting of 0 2 or 2 amperes To change taps requires connecting the lead located in front of the tap block to the desired s...

Page 5: ...8 29 0 7 29 4 1 5 51 2 4 51 6 1 7 45 1 2 45 4 16 8 1 8 40 0 7 40 9 1 9 38 0 6 38 12 2 2 34 0 37 34 16 2 5 30 0 24 31 10 1 7 28 0 43 28 15 2 4 21 0 27 21 20 3 1 16 0 20 17 10 40 24 3 6 15 0 15 15 30 4...

Page 6: ...850 800 920 1008 1120 1216 1500 1800 848 1020 1128 1260 1408 1720 2064 AMPERE CONTINuOUS ONE SECOND POWER AT AT 3 TIMES AT 10 TIMES RA11NG RATING t FACTOR TAP VALUE TAP VALUE TAP VALUE RANGE TAP AMPER...

Page 7: ...48 459 24 8 174 552 25 9 185 640 21 3 111 306 21 8 120 342 22 5 129 366 23 4 141 413 23 1 B 25 2 163 530 27 183 624 22 8 129 392 24 2 149 460 25 9 168 540 27 3 187 626 29 8 211 fi88 33 260 860 37 5 30...

Page 8: ...131 6 600 12 0 26 460 16 1 8 16 3 180 0 720 t Thermal capacities for short times other than one second may be calculated on the basis of time being inversely proportional to the square of the current...

Page 9: ...2 TYP I CAL T I ME CU RVES TYPE C0 2 OVER CU RREN T RELAY 50 60 CYCL ES I T I ME DIAL SETTING I I 1 1 10 I 9 1 1 8 I 7 6 l oo r 5 r 4 I oo 3 I t 2 r r jooojo 3 4 5 6 7 8 9 10 12 14 16 18 20 MUL T I P...

Page 10: ...T I ME CURVES TYPE C0 5 OVER CURREN T REL AY 50 60 CYCLES 11 i II I j J I I I II I II I I I I T I ME m m 1 1 tt I I I 5 I I I I I I I I I I I II I I I I I I i I i I I I I I i I I I I I II I I I I I I...

Page 11: ...tl i1 4 _ 1 t r I iT Ii 4 t b t P 3 t1 b 1 f tt 2 f1f 1 4 I H 1 1 r _ I 1 2 o i 1 It lttT il tt I I t l 1H i i l I I i I N I I I _ I I I TYP I CAL T I ME CU RVES TYPE C0 6 I OVER CURRENT R ELAY i I 5...

Page 12: ...I I I 10 9 1 1 I I I I I I I TYP I CAL T I ME CU VES TYPE C0 7 OVER CURRENT RELAY 0 60 CYCLES T I ME D I AL S ETT I N G lo t o I l oo __ _ _ r 6 7 8 9 10 12 11J 16 JB 20 MULTIP L ES OF TAP VALU E CURR...

Page 13: ...L T I ME CURVES TYPE C0 8 OVER CURRENT RELAY e0 60 CYCL ES I I I I I 1 T I ME D I AL SETT I NG 1 1 10 9 a 7 6 5 I I 1 3 2 r I 1 1 1 2 2 a 1 5 6 7 a g 10 12 111 16 18 ro MULT I PL ES OF TAP VALUE CURRE...

Page 14: ...VER CURRENT RELAY 50 60 CYCL ES 1 T I ME D I AL S ETT I NG 1 1 10 1 9 8 7 6 I 5 3 2 _ 1 1 _ r 1 2 10 r 2 3 6 7 8 9 10 12 1 16 18 20 MULT I PLES OF TAP VALUE CURRENT Curve 418249 Fig 9 Typical Time Cur...

Page 15: ...0 03 0 02 0 01 1 2 J i li 7 8 9 10 1mv L 1 1 l m 1 l f 1 rv 1 l L 1 I 1 l 1 1 1 1 r 1 1 1 l 1 1 1 i 1 1 1 i i r I 1 1 2 3 1 9 10 r f 1 I I 20 JO ItO t 1 r r 11 10 II I 7 i 2 1 2 2888655 TYP I CAL T I...

Page 16: ...block connector screw car ries operating current be sure that the screw is turned tight In order to avoid opening the current transformer circuits when changing taps under load connect the spare conn...

Page 17: ...x cept for the selection of the required 48 125 or 250 voltage on the tapped resistor This connection can be made by referring to Fig 13 I N S T A L LATI O N The relays should be mounted on switchboar...

Page 18: ...ormal deflection There fore with the stationary contact resting against the backstop the index mark is offset to the right of the 0 mark by approximately 020 The placement of the various time dial pos...

Page 19: ...ical l y cleaned A contact burnisher tt 18 2A836HO 1 i s recommended for thi s purpo se Th e use o f abrasive material for cl ean ing contacts i s not r ecommended because o f the danger of embedding...

Page 20: ...1tact circuit when en ergized with 1 2 volts and 4 an1ps current l eading 30 for the 4 to 1 2 amp ere range relays and 1 2 volts and 2 amp s for the 0 5 to 2 5 and 2 to 6 amp ere range rel ays Thi s c...

Page 21: ...per Tabl e 1 for p erma nent magnet adjustment e g IRV 8 2 tim es tap value and measure the operating time Adjust th e p ermanent magnet keeper until the operating time corresponcls to the value of T...

Page 22: ...l i ary S w i t c h C S 1 Adjust the stationary core of the switch for a cl earance between the stationary core and the moving 2 2 core when the switch i s picked up This can b e done by turning the r...

Page 23: ...0 20 20 20 20 OPERATING TIME SECONDS 0 22 14 30 1 19 1 1 1 1 1 1 0 65 0 24 DI RECTIONAL UNI T CALI BRATION Current 50 amps 100 amps Adj ust Magnetic Plugs Ad justment If spurious torque is in the con...

Page 24: ...S OR CUTOIJT 5 9 25 r ij I r PAIIEL CUTOUT lo DRILLIMG FOR SEMI FLUSII MfQ 2 ____ 1 6 I I I M i 0 PAIIEL DRI LLING OR CUTOUT FOR PRO If CTIOII MTG FROIIT V I EW DI A HOLES FOR 190 32 MTG SCIEWS i II O...

Page 25: ...ting on the interaction between the SUPERSEDES I L 41 1 33 26 Denotes change from superseded i ssue polarizing circuit flux and the operating circuit flux Mechanically the directional unit is composed...

Page 26: ...N 1 tt m o 0 o m r Fig 1 Type IRQ Relay without Case Rear View Fig 2 Type IRQ Relay without Case Front View E l e c t r i c a l P a r t M a n u a l s c...

Page 27: ...cause a contact closing torque The electromagnet for the type IRQ 2 and IRQ 1 1 relays has a main coil consi sting o f a tapped primary winding a secondary winding Two identi cal coils on the outer le...

Page 28: ...ontact for high spe ed op eration The transformer i s of the saturating type for limiting the energy to the instantaneous overcurrent unit at higher values of fault current and to reduce 4 ID J 1 z 8...

Page 29: ...1 5 2 0 2 5 4 5 6 8 10 12 REST O F C I RCUIT MillE SAME AS THAT AT CLOSE CS 1 COIITACT LEFT TO TEST OYEICUIREIT ALTERNATIVE COMMECT IOIIS FOR 5 T0 2 5 u PERE flANGE IRQ 5 A ll IRQ 6 RELAYS UIIIT CO T...

Page 30: ...act assembly has been factory adjusted for low contact bounce performance and should not be changed The time vs current characteristic for the direc tional unit is shown in Fig 6 T r i p C i r c u i t...

Page 31: ...ordinating time of 0 3 seconds plus circuit break er time is recommended between rel ay being set and the relays with which coordination is to be effected The connector screws on the tap plate above t...

Page 32: ...oad connect the spare tap screw in the desired po sition before re moving the other tap screw from the ori ginal tap position N egative S e q u e n c e F i l ter 8 No setting i s required lndi eating...

Page 33: ...d to insure that the relay is in proper working order Negative Sequence F i l ter The filters are adjusted for balance in the factory and no further adjustments or maintenances should be required The...

Page 34: ...minus 3 3 Time Curve Table 1 shows the time curve calibration points for the various types of relays With the time dial set to the indicated position apply the current specified by Table 1 e g for the...

Page 35: ...below the knee of the saturation i e use 10L50 or better All contacts should be periodically cleaned A contact burnisher tt 18 2A836H0 1 is recommended for this purpose The use of abrasive material fo...

Page 36: ...e spring is adjusted by placing a screwdriver or similar tool into one of thB 1 2 notches located on the periphery o f the spring ad juster and rotating it The spring adjuster i s located on the under...

Page 37: ...t l Oo c and will return to the backstop at tap value current l Oo c 3 Time Curve Calibration Install the perma nent magnet Apply the indicated current per Table 1 for perma nent magnet adjustment e g...

Page 38: ...A to proper terminal per Fig 14 Block directional unit D contacts close and ener gize trip circuit with rated voltage Contacts of aux iliary switch C 1 should make as indicated by a neon lamp in the...

Page 39: ...AP VALUE TAP VALUE RANGE TAP AMPERES AMPERES ANGLE CURRENT CURRENT CURRENT CURRENT 0 5 0 91 28 58 4 8 39 6 256 790 0 6 0 96 28 57 4 9 39 8 270 851 0 8 1 18 28 53 5 0 42 7 308 1024 0 5 2 5 1 0 1 37 28...

Page 40: ...6 2 21 21 6 22 1 23 1 23 5 24 8 26 5 22 4 23 7 25 3 26 4 27 8 30 1 35 6 180 1 10 1 18 126 136 144 162 183 126 143 162 183 204 247 288 270 288 325 360 462 548 630 308 342 381 4 17 448 540 624 376 450 5...

Page 41: ...SECOND POWER AT VOLT AMPERES AT 3 TIMES AT 10 TIMES AT 20 TIMES AMPERE RATING RATING FACTOR TAP VALUE TAP VALUE TAP VALUE TAP VALUE RANGE TAP AMPERES 0 5 2 5 2 6 4 1 2 0 5 0 6 0 8 1 0 1 5 2 0 2 5 2 0...

Page 42: ...actor Angle 1 4 66 5 5 32 2 4 92 5 0 100 3 3 30 3 7 27 The voltage burden of the relay with positive sequence voltage applied n o output voltage to the direc tional unit is as follows Pot Transf Acro...

Page 43: ...GL E VA AT 5 AMPS 39 24 36 13 35 8 5 34 6 0 32 4 6 30 2 9 36 9 0 32 5 0 3 0 3 0 2 8 2 1 26 1 5 2 4 0 93 49 6 5 43 3 3 3 8 2 1 35 1 4 33 1 1 29 0 7 5 1 2 4 45 1 2 40 0 7 3 8 0 6 34 0 37 30 0 24 28 0 43...

Page 44: ...l i 1 1 1 i I 1 1 I lo r 1 I 1 1 1 1 2 0 t t i D ti tttttt d t i ttb ti tllitl llli l t lli d i tl C J I l l 1 2 3 ij 5 6 7 8 9 10 12 14 16 18 20 MUL T I P L eS OF TAP VALU E CURRENT Curve 418244 Fig...

Page 45: ...i I 1 i I I I 1 1 l o l 1 0 I 9 a 7 3 TYP I CAL T I ME CURVES TYPE C0 5 OVER CU RREN T RELAY 50 60 CYC L ES I I l i I I I I I I I I I I I I I i II I i I I I 1 I I I I I l i I I I I II I i I I I I I ll...

Page 46: ...f N 1 1 r f i tF ti 10 l 1 9 t f 8 I 7 rs 1 1 r 1 I t r r _ _ 5 f j j 4 1 3 H t 1 i 1 1 I 1 I I t T 1 j 1 I j_ _ t _ I I I I t I I j 1 1 lo H _ r r f i I I I l f I I P I T I I I fh i 1 i I I 1 i SETT...

Page 47: ...NT RELAY i 50 60 CYCL ES I I I I I I I I I i T I ME D I AL SETT I N G 1 1 10 I 9 e _ 7 r 1 r I 6 I 5 r ij ll r r r r I L 3 I 1 o 2 3 ll 5 6 7 e 9 10 12 1ll 16 lB 20 MUL T I PL ES Of TAP VAL U E CU RRE...

Page 48: ...L AY I 0 60 CYCL ES f r I I I I I I I I I I I I T I ME D I AL S ETT I NG 1 l 1 1 IN i 10 1 9 IN I 8 I N 7 1 I _ 6 I N c 5 loo I I I 3 l 2 I iI iiO N 1 0 I r 1 I I no 112 I I I I I 2 3 li 5 6 7 8 9 10...

Page 49: ...E CURVES TYPE C0 9 OVER CU RRENT RELAY 50 60 CYCL ES I I I I T I ME D I AL S ETT I NG 1 1 10 1 9 1 8 7 6 5 4 I 3 2 1 r r 1 2 _ 2 3 5 6 7 8 9 10 12 14 16 18 20 MULT I PLES OF TAP VALU E CU RREN T Curve...

Page 50: ...0 02 0 01 1 2 3 II i 6 7 8 9 10 m 1 l _l l 1 1 1 1 U l l I X 1 1 l 1 1 1 1 i r 1 2 3 s 7 9 10 t 20 30 110 t t r r r r r r t I r r 20 30 o 1 1 10 I I 7 2 1 1 IWLTI I LES Of T UUI CUIR 11T 2888655 TYP I...

Page 51: ...2 _i_ I I 7 2 14 16 s 1 J 8 PAIIEL CUTOUT DR I LLING FOR SEM I FLUSH MTG PANEL DRILLING Oft CUTOUT FOR PROJ ECTI ON I lTG I I _ 01 A ll HOLES FOR 19G 32 MTG SC EWS 3 D U 20 HOLES II OR CUT OUT N Fig...

Page 52: ...W E S T I N G H O U S E E L E C T R I C C O R P O R A T I O N R E LAY I N STR U M E NT D I VI S I O N N EWAR K N J Printed in U S A w w w E l e c t r i c a l P a r t M a n u a l s c o m...

Page 53: ...primary winding a secondary winding Two identical coils SU PERSEDES I L 41 l 33L Denotes change from superseded i ss ue o n the outer I e g s o f th e I amination structure are con nected to the main...

Page 54: ...olarized D irect ional Unit 3 Voltage Polarized Directional Unit 4 Time Over current Unit 5 Indicating Contactor Switch 6 A uxiliary Switch 1 3 Fig 2 Type IRD Relay Without Case Rear View l Varistor 2...

Page 55: ...onary Contact Pressure Spring 3 Magnetic A djusting Plugs 4 Upper Bearing Screw 5 Moving Contact 6 Spring A djuster Clarnp 7 Current B ias Vane 2 Fig 4 Time Overcurrent Unit 1 Tap B lock 2 Time Dial 3...

Page 56: ..._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 4 Fig 5 Instantaneous Overcurrent Unit 1 Saturating Transformer 2 Tap Block 3 Stationary Contact 4 Moving Contact Fig 6 Indicating Contactor Switch ICS w w w E l...

Page 57: ...unit is similar in construction to the directional unit The time phase relationship of the two air gap fluxes necessary for the development of torque is achieved by means of a capacitor connected in...

Page 58: ...lus trate the use of the curves Example 1 Using the formulas and definition of symbols on Fig 1 7 we have L et Ipol 2 amps lop 2 31 Tap Value T 0 5 amp 40 0 For timing unit assume C0 9 with Yz time di...

Page 59: ...nd this ad justment should not be disturbed WITII IEUTIU IIIUITAIEOUS POUIITY AS liM TME DIIECTIOtiAL lllll lT CIIITACT CLOSES TO Till LffT IATWT II i TIAISfoe ll lED toT DllftTI OIAL UIII T LOW 1 CYL...

Page 60: ...33 1 1 33 8 1 8 29 0 7 29 4 1 5 51 2 4 51 6 1 7 45 1 2 45 4 16 8 1 8 40 0 7 40 9 1 9 38 0 6 38 12 2 2 34 0 37 34 16 2 5 30 0 24 31 10 1 7 28 0 43 28 15 2 4 21 0 27 21 20 3 1 16 0 20 17 10 40 24 3 6 15...

Page 61: ...6 0 0 07 0 59 6 6 26 0 1 04 9 9 106 0 4 20 0 1 1 6 10 8 1 2 1 2 472 0 t Thermal capacities for short tim e s other than one second may be calculated on the basis of tim e being inversely proportional...

Page 62: ...04 38 7 262 800 2 5 4 0 1 10 55 5 13 39 8 280 920 3 0 4 4 1 10 51 5 37 42 8 3 1 2 1008 2 6 3 5 4 8 1 10 47 5 53 42 8 329 1 120 4 0 5 2 1 10 45 5 72 46 0 360 1 2 16 5 0 5 6 1 10 41 5 90 50 3 420 1500...

Page 63: ...IRC 7 I RP 7 T I M E O V E RC URR E N T U N I T S CONTINUOUS RATING AMPERES 2 2 2 2 5 2 8 3 4 4 0 4 4 8 8 8 9 7 10 4 11 2 12 5 13 7 16 18 8 19 3 20 8 22 5 25 28 ONE SECOND RATlNGt AMPERES 88 88 88 88...

Page 64: ...OVERCURRENT UNITS VOLT AMPERES tt One Second Power At At 3 Times At 10 Times Rating t Factor Tap Value Tap Value Tap Value Amperes Angle Current Current Current 56 36 0 7 2 6 54 7 1 8 56 34 0 75 6 80...

Page 65: ...I 1 1 1 2 2 2 I I I 9 8 7 I 6 1 5 _ iji N 3 i TYP I CAL T I ME CURVES TYPE C0 2 OVER CU RREN T RELAY 50 60 CYCL ES I T I ME D I AL SETT I N G 1 1 10 1 1 o o p r r 1 r r Jo T 3 1 5 6 7 8 9 10 12 14 16...

Page 66: ...0 9 8 7 6 j 3 TYP I CAL T I ME CURVES OVER I l l I I i 1 I I i T IT ll I I I I I 60 I I I T I ME D I l l 1 1 i i l l I i I 1 1 5 TYPE C0 6 CU RREN T RElAY 60 CYCLES I u I II I I I I I I l I i I I I l...

Page 67: ..._ U 0 z 0 u UJ U 2 1 _ l Ll l_ 1 _l 1 I 1 1 1 I I I N N I t o 1 o r 5 I rt I I 6 7 8 9 10 MULTI PLES O F TAP VALUE CURRENT 12 I I 1 16 18 20 Curve 41846 Fig 12 Typical Time C urve ol the Time Overcurr...

Page 68: ...RELAY I I I i 0 60 CYCLES 1 I I 1 i I I I 1 1 1 T I ME D I AL SETT I N G 1 1 10 9 1 8 7 6 too 5 I I 3 _ F oo I _ r 2 1 112 I I 2 3 5 6 7 8 9 10 12 1 16 JB 20 MULT I PLES OF TAP VALU E CU RRENT Curve 4...

Page 69: ...EL AY e0 60 CYCL E I I T I ME D I AL SETT I NG I 11 10 9 8 T 7 6 5 3 I 2 r 1 r 1 2 2 3 5 6 7 8 9 10 12 1ij 16 18 20 MULT I PLES OF TAP V AL U E CURRENT Curve 418248 Fig 14 Typ ic ol Tim e Curve of th...

Page 70: ...RENT RELAY 50 60 CYCL ES I I i T I ME O I AL SfTT I NG 1 1 10 9 7 8 6 5 4 3 2 lo 1 r I 1 2 2 6 7 8 9 10 12 11J 16 18 20 MU LT I P L ES O F TAP VALUE CU RREN T Curve 418249 Fig 15 Typical Time Curve of...

Page 71: ...l l I l 1 1 l 2 1 l 1 l 1 1 1 l 1 1 i 3 II i I 7 8 9 10 1 1 r r l I I MIILTI I LES Of T VAlli C li WIT 20 30 110 r 1 C 1 r I r 1 I I r r r _ 1 1 10 9 I 7 i 2 1 2 2888655 TYP I CAL T I E CURVES TYPE C...

Page 72: ...S OF PRODUCT PICKUP EpoL POLARIZ ING VOLTAGE IpQL POLARIZING CURRENT Iop OPERATING CURRENT 9 ANGLE BY WHICH Io LAGS EP CI ANGLE BY WHICH I0 LlAOSi p DIVIDE BY 4 FOR 4 1 2 AUP RANGE DIVIDE BY I FOR 4 1...

Page 73: ...2 amperes with the current lagging voltage by 60 For the directional units used with the 4 to 12 amp ere range time overcurrent units the minimum pick up is 1 ampere for the current polarized dtrec t...

Page 74: ...cuit the voltage polarizing circuit at the terminals of the relay 22 A D J U S T M E N T S A N D M A I N T E N A N C E The proper adjustments to insure correct operation of this relay have been made a...

Page 75: ...the time overcurrent unit POS 67N Tcf I ST S E C c c_s_ ___ _ co DEVICE NUMBER CHART 67N DlRECTIONAL OVERCURRENT GROUND RELAY TYPE IRP D DIRECTIONAL UNIT CO TIME OVERCURRENT UNIT t INSTANTANEOUS 0 C...

Page 76: ...S 1 67N 10 I S 1 1S CO I cs cs T I 5 2 o 67N 1 ST S E C C S 1 C0 NE G ___ __ __ __ __ __ ____ 289B508 Fig 2 1 External Schematic of the IRD Relay for Ground Fault Protection S T A T I O N BUS DE CE NU...

Page 77: ...contact C al i bration use the following procedure for calibrating the relay if the relay has been tak en apart for rep airs or the adjustments have been disturbed This procedure should not be used u...

Page 78: ...lzeci relays IRC and IRD current polarized unit are open circuited Upon completion of either a or b current is applied to the operating circuit terminals as per 26 Table 2 Plug adjustment is then mad...

Page 79: ...rew Back off the core screw approximately one turn and lock in place This prevents the moving core from striking and sticking to the stationary core because of residual magnetism Adjust the contact cl...

Page 80: ...ng Direction Then the plug is screwed in Until Spuri ous Torque is Reversed t Short circuit the voltage polarizing circuit at the relay terminals before making the above adjustment TAB LE I l l T I M...

Page 81: ...__ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ I L 4 1 1 3 3M B r Ill S I S 1 R c B A I _ _ A t Pt O P G L t ft ne K D __ d VP 1 Il C c A L J A r 1 b Fig 24 Test Connections 29 w w w E l e c t...

Page 82: ..._ TOOTHED Uf __ LOWIASHER PANEL S PACERS FOR I 2 s i _J PANEL CUTOUT DR I LL I NG FOR SEMI FLUSH MTG PANEL DR I LL I NG OR CUTOijT FOR PROJECT I ON MTG FROitT Y I EW Fig 25 Outline and Drilling Plan f...

Page 83: ...IIEL USi 1 32 STUD 1 r _ tftrrrrBm J D I A D I A 10 HOLES 611 OR CUT OUT TEIIMI UL AIID MOUNTI NG DETAI LS 9 16 h ta I 1 s s en PAIIEL CUTOUT I DRI LL I NG FOR SEMI FLUSH MTG PAIIEL OR I LLI IQ OR CUT...

Page 84: ...W E S T I N G H O U S E E L E C T R I C C O R P O R A T I O N R E LAY I N STR U M E NT D I V I S I O N N EWA R K N J Printed in U S A w w w E l e c t r i c a l P a r t M a n u a l s c o m...

Page 85: ...d by the el ectromagnet result in out of ohase fl uxes in the air gap The out of phase air gao fl uxes oroducerl cause a contact closing torque SU PERSEDES I L 4 1 133M dated A ug ust 1 974 Denotes ch...

Page 86: ...Polarized D irect ional Unit 3 Voltage Polarized Directional Unit 4 Time Over current Unit 5 Indicating Contactor Switch 6 A uxiliary Switch 1 3 Fig 2 Type IRD Relay Without Case Rear View 1 Varistor...

Page 87: ...essure Spring 3 Magnetic A djusting Plugs 4 Upper Bearing Screw 5 Moving Contact 6 Spring A djuster Clarnp 7 C urrent B ias Vane 2 7 F ig 4 Time Overcurrent Unit l Tap B lock 2 Time D ial 3 Control Sp...

Page 88: ..._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Fig 5 Instantaneous Overcurrent Unit 1 Saturating Transformer 2 Tap B lock 3 Stationary Contact 4 Moving Contact T Fig 6 Indicating Contactor Switch ICS 4 w w w E...

Page 89: ...nstantaneous overcurrent unit is similar in construction to the directional unit The time phase relationship of the two air gap fluxes neces sary for the development of torque is achieved by means of...

Page 90: ...trate the use of the curves Example 1 Using the formulas and definition of symbols on Fig 1 7 we have L et Ipol 2 amps Iop 2 3 1 Tap Value T 0 5 amp 40 0 For timing unit assume C0 9 with Y z time dial...

Page 91: ...WE IIIUIITAIEOUS OLAI ITY AS IMM HIE DIIECTIIMIU llaiT COITACT CLOSES TO TilE LifT IUTUTAif OIII OWUCUUEJT WilT U U CYLIIMI Ill I T SATUUTIIi TU ISFOI I lED DOT OllftTIIIIAL IHI I T L OW 1 CYLIJIOU UI...

Page 92: ...5 8 8 10 10 10 P F ANGL E 39 36 35 34 32 30 36 3 2 3 0 28 26 24 49 43 38 35 33 29 5 1 45 40 38 34 30 28 21 16 15 12 11 3 1 24 20 18 16 15 t t 1 VA AT 5 AMPS P F ANGLE 24 46 13 37 8 5 34 6 0 32 4 6 3...

Page 93: ...04 9 9 1 0 6 0 4 20 0 1 1 6 1 0 8 1 2 1 2 472 0 t T h e rrn al capaciti e s fo r short tim e s o th er than one s e c ond m ay be cal culated on the basis o f tim e b einy in v e rs ely proportional t...

Page 94: ...9 5 04 38 7 262 800 2 5 4 0 1 10 55 5 13 39 8 280 920 3 0 4 4 ao 51 5 37 42 8 312 1008 2 6 3 5 4 8 1 10 47 5 53 42 8 329 1 120 4 0 5 2 1 10 45 5 72 46 0 360 1216 5 0 5 6 1 10 41 5 90 50 3 420 1500 6 0...

Page 95: ...462 548 630 308 342 381 417 448 540 624 376 450 531 6 l l 699 880 1056 CONTINUOUS ONE SECOND RATING RATINGt POWER AT AT 10 TIMES AT 20 TIMES TAP VALUE TAP VALUE RANGE TAP AMPERES AMPERES FACTOR TAP V...

Page 96: ...Tap Value Tap V alue T ap V alue Range Tap Amperes Amperes Angle Current Current Current Current 0 5 1 7 5 6 36 0 7 2 6 54 7 1 8 250 0 6 1 9 5 6 3 4 0 7 5 6 80 75 0 267 0 8 2 2 5 6 3 0 0 8 1 7 46 84 0...

Page 97: ...4 0VER CU R R ENT R E LAY H r 1 l l 1 r 1 cr t t t t t h tl t tt 1 t i r H r t 50 60 H E RTZ 60 1 SEC t 1 t t t t I r 4 H t H 4 4 4 4 1 1 t t 1 r H 1 t t t f t ri t t t HI t l ooi 1 t t 1o d 1 2 I t I...

Page 98: ...I i I I I I TYPI CA L TI M E CU R V ES TYPE C0 5 OVER CU R R ENT R E LAY 50 60 H ERTZ I I I I I i i i i i I I l l I II I i I i I I 1 i i I I I I I I I I i I I I I I I I i I i i r I I I I i I I I I I...

Page 99: ...I i 1 1 I I I I 1 1 I N 1o l i I h 5 9 A 8 X 1 7 I r b 5 h T 3 n 2 I I r f 1 _ __ t 1 I I 1 t 1 W l Jtil w i 1 oj o 11 j j t J r _ I TYPI CA L T I M E CU R V ES TYPE C0 6 O V E R CU R R ENT R E LAY I...

Page 100: ...C0 7 I OVE R C U R R ENT R E LAY I 50 60 H ERTZ I I r t r I r r i I _A I I i I I I I I I Ll T I ME D I AL SETT I N G I 1 1 1 IN 10 N 9 8 I 7 r I 1 o 6 r I r 5 r r r l L 3 1 2 r 3 5 6 7 8 9 10 12 1 16...

Page 101: ...I TYPE C0 8 OVER CU R R E NT R E LAY I I 1 1 4 4t 50 60 H ERTZ t I I t i t 1 1 1 r H t f l r __ f 1 t T I ME D I AL S ETT I NG t 1 1 r 7 IV to r t N r X 1 r r t 1 4 t i t _ ___ J t 3 _ _ 1 t I X l r...

Page 102: ...H tH HTH H OVER CU R R ENT R E LAY r r I f r 1 t l 1 11 2 50 60 H E RTZ I I I I I I I I I I I I I I I I I I I I 1 I I I I I fu I I i I I I I t i f I I I I 3 6 7 8 9 10 12 114 16 18 20 MULT I PLES OF T...

Page 103: ..._1_ I 2 1 1 3 6 7 8 9 10 m l l I 1 1 2 1 1 l 1 1 i _ 3 II 6 7 8 9 10 r r r r r r MIILTI I LES Of Til VAlli CIIIIEIIT 20 30 110 r r I 20 30 llO 1 1 10 9 I 7 s l 2 1 2 2888655 TYPI CA L T I M E CU R V...

Page 104: ...OF PRODUCT PICKUP EpoL POLARIZ ING VOLTAGE IpQL POLARIZING CURRENT lop OPERATING CURRENT 8 ANGLE BY WHICH Io LAGS EP Cf ANGLE BY WI11CH Io LlADS Ip DIVIDE BY 4 FO R 4 12 AMP RANGE Q DIVIDE BY I FOR 4...

Page 105: ...and 2 amperes with the current lagging voltage by 60 For the directional units used with the 4 to 12 ampere range time overcurrent units the minimum pick up is 1 ampere for the current polarized dtrec...

Page 106: ...Prnal a c con n ecti o n s u f the directi o n al o Y ercl rrent rel ay s arr shown i n Figs 20 2 1 and 2 2 I f n o voltage polarizing source i s t o b e connected t o the IRD relay short circuit t h...

Page 107: ...D E V t C E NUMBEk C H A R T 6 7 N DIRECTIQNAL OVERCURRENT G R OUND REL A Y TYPE f RP o lJIRECT I O N A L UNIT C O t iME OVE R CURRENT UNIT l fNSTANTANEOUS 0 C UNIT l iS T SATU R A T I N G T RANSFORME...

Page 108: ...E A U X p T Pos 6 7N TO Fig 21 External Schematic of the IRD Relay for Ground Fault Protection 1 s c a c s__ __ __ _ __ __ __ __ ___ A 8 A 8 C L I N E D E V I C E N U M B E R H A R T I P O L A R I Z I...

Page 109: ...e contact C a l i bration use the following procedure for calibrating the relay if the relay has been tak en apart for repairs or the adjustments have been disturbed This procedure should not be used...

Page 110: ...ized relays IRC and IRD current polarized unit are open circuited Upon completion of either a or b current is applied to the operating circuit terminals as per 26 Table 2 Plug adjustment is then made...

Page 111: ...screw Back off the core screw approximately one turn and lock in place This prevents the moving core from striking and sticking to the stationary core because of residual magnetism Adjust the contact...

Page 112: ...n Contact Closing Direction Then the plug is screwed in Until Spuri ous Torque is Reversed t Short circuit the voltage polarizing circuit at the relay terminals before making the above adjustment TABL...

Page 113: ...IRP IRC AND IRD RELAYS _ L_ 4_ _ 1 13 3N A 8 c v I PHASE SH I FTER c A I 8 6 6 PHASE ANGLE D METER o _ 4 VARIAC J J J J a b Fig 24 Test Connections 29 w w w E l e c t r i c a l P a r t M a n u a l s...

Page 114: ...3 SEM I FLUSH MTG PROJECT I O N MTG TERMINAL AND MOUNTING DETAILS 250 DIA 4 HOLES FOR 6 351 190 32 MTG SCREWS PAN E L C UTO U T 8 DRI LLING FOR S E M I FLUSH MTG 1 0 25 4 2 0 50 8 57 D 7902 Fig 25 Out...

Page 115: ...250 i 489 00 1 j_ 1 375 161 93 2 781 70 64 f 8 938 227 01 250 DIA 4 HOLES FOR 6 351 190 32 MTG SCREWS 9 250 235 00 2 938 74 63 18 500 496 9 57 D 7904_ Fig 26 Outline and Drilling Plan for the IRD Rel...

Page 116: ...W E S T I N G H O U S E E L E C T R I C C O R P O R A T I O N R E LAY I N STR U M E N T D I VI S I O N N EWAR K N J Printed i n U S A w w w E l e c t r i c a l P a r t M a n u a l s c o m...

Page 117: ...r in con struction to the 0 2 2 0 ampere res except that the main coi l i s not tapped TRIP CI RCUIT CONSTANTS 1 amp ICS 0 1 Ohms de re s i s tance THERMAL CAPACI TY Ampere 1 second 1 4 0 Rating Coi l...

Page 118: ...w w w E l e c t r i c a l P a r t M a n u a l s c o m...

Page 119: ...f phase air gap fluxes produced cause a contact closing torque SU PERSEDES I L 4 1 1 33 3C Denotes change from superseded i ssue I ndicating Contactor Sw itch U n its I C S 1 and I C S T The d e indic...

Page 120: ...Rectifier 0 03 MFD Capacitor D Unit CSl Unit ICS I CO Unit ICS T Fig 1 Type IRV Relay Without Case Front View Fig 2 Type IRV Relay Without Case Rear View 1 23 MFD co Unit t m a a m r E l e c t r i c...

Page 121: ...ing resulting in one time curve throughout the range of the relay Across the secondary is connected a non linear resistor known as a varistor The effect of the varis tor is to reduce the voltage peaks...

Page 122: ...to trip a circuit breaker The indicating contactor switch has two taps that provide a pickup setting of 0 2 or 2 amperes To change taps requires connecting the l ead located in front of the tap block...

Page 123: ...33 1 1 33 8 1 8 29 0 7 29 4 1 5 51 2 4 5 1 6 1 7 45 1 2 45 4 16 8 1 8 40 0 7 40 9 1 9 38 0 6 38 12 2 2 34 0 37 34 16 2 5 30 0 24 3 1 10 1 7 28 0 43 28 15 2 4 21 0 27 21 20 3 1 1 6 0 20 17 10 40 24 3...

Page 124: ...848 1020 1 1 28 1260 1408 1720 2064 IRV 5 I RV 6 TI ME OVERCURRENT UNI TS AMPERE RAl lE TAP 0 5 0 6 0 8 0 5 2 5 1 0 1 5 2 0 2 5 2 2 5 3 2 6 3 5 4 5 6 4 5 6 4 12 7 8 10 12 CONTINuOUS RA l1NG AMPERES 2...

Page 125: ...2 640 306 342 366 413 448 530 624 392 460 540 626 688 860 1032 CONTINUOUS ONE SECOND POWER AT AT 3 TIMES AT 10 TIMES AT 20 TIMES AMPERE RATlNG RANGE TAP AMPERES 0 5 2 7 0 6 3 1 0 8 3 7 0 5 2 5 1 0 4 2...

Page 126: ...9 131 6 600 12 0 26 460 16 1 8 16 3 180 0 120 t Thermal capacities for short times other than one second may be calculated on the basis of time being inversely proportional to the square of the curren...

Page 127: ...YP I CAL T I ME CU RVES TYPE C0 2 OVER CURRENT RELAY 1 50 60 CYCL ES SEC i 1 T I ME D I AL SETT I N G I I 1 1 10 1 I 9 8 7 1 6 r r 1 5 f ij 1 3 r roo 1 r 2 1 r 1 f o 1 2 2 3 5 6 7 8 9 10 12 14 16 18 2...

Page 128: ...CURRENT R ELAY 50 60 CYCLES ll_ l1 1 I I ll I I 1 1 l I _ 1 _ L j _ l l _ _ _ l l 1 l i _ _ l I 1 I I 1 1 I l l T I ME D I AL S ETT I NG 1 1 1 1 1 I 1 0 9 8 1 7 1 1 6 5 r r 3 2 lo 1 1 1 2 2 3 5 6 7 8...

Page 129: ...U i r Hi 2 _ 1 1 1 I j 1 r r r i I I t i t t r 1 2 I I I t tt fffi t l It I H t JH t 1 I r I I TYP I CAL T I ME CU RVES TYPE C0 6 I OVER CURRENT RELAY I 60 60 CYCL ES I I I I I I I I I I I SETT I NG...

Page 130: ...I OVER CURRENT RELAY I I I IT 0 60 CYC L ES I 1 1 I 1 I 1 1 T I ME D I AL SETT I N G 1 1 10 9 8 lo 7 r r 1 o 6 l oo t 5 1 o 1 r 3 I _ I 2 r 1 t 1 2 2 3 5 6 7 8 9 10 12 1 16 lB 20 MULT I PLES OF TAP V...

Page 131: ...I CAL T I ME CURVES TYPE co a OVER CURRENT R ELAY 50 60 CYCL ES I I I I T I ME D I AL SETT I NG u 10 1 9 I I 8 7 I I 6 5 I I 3 2 1 o 1 1 2 2 3 5 6 7 8 9 10 12 1 16 18 20 MULT I P L ES OF TAP V AL U E...

Page 132: ...R CURRENT RELAY 50 60 CYCLES 1 T I ME D I AL SETT I NG 1 1 10 i 9 8 7 6 ti 14 3 2 loo 1 iii r _ 1 2 I 2 3 6 7 8 9 10 12 111 16 18 20 MULT I PLES OF TAP VALUE CURRENT Curve 418249 Fig 9 Typical Time Cu...

Page 133: ...05 o o 0 03 0 02 0 01 1 2 B l 1 1 v l 1 l 1 s 1 1 J 16 i 1 7 8 9 10 U W l 1 L l l 1 l r 1 t 1 I I 1 2 3 II S I 7 I 9 10 r 1 I MIILTI LES Of Tl VAUI CUIIEJIT 20 tO 0 r r r r 11 10 9 I 7 5 l 2 1 2 28886...

Page 134: ...current curves C A U T I O N Since the tap block connector screw car ries operating current be sure that the screw is turned tight In order to avoid opening the current transformer circuits when chang...

Page 135: ...the selection of the required 48 125 or 250 voltage on the tapped resistor This connection can be made by referring to Fig 13 I N ST A L L A T I O N The relays should be mounted on switchboard panels...

Page 136: ...lf of its normal deflection There fore with the stationary contact resting against the backstop the index mark is offset to the right of the 0 mark by approximately 020 The placement of the various ti...

Page 137: ...t transformers should be work ed well below the knee of the saturation i e use 10L50 or better All contacts shoul d be periodically cleaned A contact burnisher tt 182A836HO 1 is recomm ended for thi s...

Page 138: ...volts and 4 amps current leading 30 for the 4 to 1 2 ampere range relays and 1 2 volts and 2 amps for the 0 5 to 2 5 and 2 to 6 ampere range relays This can be done approximately using current in phas...

Page 139: ...he 1 30 times tap value operating time from the number 6 time dial position is 54 9 5 seconds It is important that the 1 30 times tap value current be maintained accurate ly The maintaining of thi s c...

Page 140: ...core and the moving core when the switch is picked up This can be done by turning the relay upside down Then screw up the 22 core screw until the moving core starts rotating Now back off the core scr...

Page 141: ...tic Plugs Adjustment Rotate core by means of adjuster located on bottom side of cylinder unit Adjust core so that a slight contact opening torque is made Recheck at 15 and 5 amps to see there is no cl...

Page 142: ...RI LLING OR CUTOUT FOR PRO If CTIOII MTG FROIIT VIEW D I A HOLES FOR 190 32 MT8 SCREWS I I DU 2 NOLES TE114111AL IIUMBER 57 D 7902 Fig 7 6 Outline and Drilling Plan for the Type IRV Relay in the Type...

Page 143: ...ing on the interaction between the SUPERSEDES I L 41 1 33 2A Denotes change from superseded i ssue polarizing circuit flux and the operating circuit flux Mechanically the directional unit is composed...

Page 144: ...N Fig 1 Type IRQ Relay without Case Rear View j Fig 2 Type IRQ Relay without Case Front View t tl m 0 0 0 m E l e c t r i c a l P a r t M a n u a l s c...

Page 145: ...ntact closing torque The electromagnet for the type IRQ 2 and IRQ 1 1 relays has a main coil consisting o f a tapped primary winding a secondary winding Two identi cal coil s on the outer legs of the...

Page 146: ...t for high speed op eration The transformer is of the saturating type for limiting the energy to the instantaneous overcurrent unit at higher values of fault current and to reduce 4 ID 1 z 8 7 0 6 1 z...

Page 147: ...7 1 5 2 0 2 5 4 5 6 8 10 12 REST OF C I RCUIT MOTE SAME 1 TIIAT AT CLOSE CS 1 COitTACTS lEFT TO TEST OYEICUIIEIT ALTERIU TJVE CONNECTI O S FOR 5 T0 2 S uti ERE U IIGE I RJI 5 AND I Q 6 RH I YS I Ult T...

Page 148: ...s will safely clo se 3 0 amperes at 250 volts d c and the seal in contacts of the indi cating contactor switches will safely carry this cur rent long enough to trip a circuit breaker The indicating co...

Page 149: ...The connector screws on the tap plate above the time dial makes connections to various turns on the operating coil By placing this screw in the various tap plate holes the relay will just close its c...

Page 150: ...when changing taps under load connect the spare tap screw in the desired position before re moving the other tap screw from the original tap position N egative Sequence F i l ter 8 No setting is requi...

Page 151: ...be required A c c e ptance Check The following check is recommended to insure that the relay is in proper working order N egative Sequence F i l te r The filters are adjusted for balance i n the facto...

Page 152: ...equal tho se of Table 1 plus or minus 5 p ercent For type IRQ 1 1 relay only the 1 30 times tap value operating time from the number 6 time dial position in 54 9 5o c seconds It is important that the...

Page 153: ...rmers should be worked well below the knee of the saturation i e use 10L50 or better All contacts should be periodically cleaned A contact burnisher i t 18 2A836HO 1 is recommended for this purpo se T...

Page 154: ...r or similar tool into one of tha 1 2 notches located on the periphery o f the spring ad juster and rotating it The spring adjuster i s located on the underside of the bridge and is held in place by a...

Page 155: ...will return to the backstop at tap value current l Oo c 3 Time Curve Calibration Install the perma nent magnet Apply the indicated current per Table 1 for perma nent magnet adjustment e g IRQ 8 2 time...

Page 156: ...proper terminal p er Fig 14 Block directional unit D contacts close and ener gize trip circuit with rated voltage Contacts of aux iliary switch C 1 should mak e as indicated by a neon l amp in the co...

Page 157: ...AP VALUE TAP VALUE TAP VALUE RANGE TAP AMPERES AMPERES ANGLE CURRENT CURRENT CURRENT CURRENT 0 5 0 91 28 58 4 8 39 6 256 790 0 6 0 96 28 57 4 9 39 8 270 851 0 8 1 18 28 53 5 0 42 7 308 1024 0 5 2 5 1...

Page 158: ...1 247 47 4 92 35 6 288 270 288 325 360 462 548 630 308 342 381 417 448 540 624 376 450 53 1 611 699 880 1056 IRQ 7 TIME OVERCURRENT UN ITS CONTINUOUS ONE SECOND RATING RATING AMPERES AMPERES 2 2 2 2...

Page 159: ...OVERCU R R EN T UNITS CONTINUOUS ONE SECOND POWER AT AMPERE RATING RATING FACTOR TAP VALUE RANGE TAP AMPERES AMPERES ANGLE CURRENT 0 5 1 7 56 36 0 72 0 6 1 9 56 34 0 75 0 8 2 2 56 30 0 81 0 5 2 5 1 0...

Page 160: ...or Angle 1 4 66 5 5 3 2 2 4 92 5 0 100 3 3 30 3 7 27 The voltage burden of the relay with positive sequence voltage applied n o output voltage to the direc tional unit is as follows Pot Transf Across...

Page 161: ...ING AMPERES 39 24 36 13 35 8 5 34 6 0 32 4 6 3 0 2 9 3 6 9 0 3 2 5 0 3 0 3 0 2 8 2 1 26 1 5 24 0 93 49 6 5 43 3 3 38 2 1 35 1 4 33 1 1 29 0 7 5 1 2 4 45 1 2 40 0 7 3 8 0 6 34 0 37 30 0 24 28 0 43 2 1...

Page 162: ...I I I I T I i I I l 1 I 1 I I 1 1 i r I I T I I r 1 l I lf t t 1 L 1 f 1 1 1 iil T N f T I ME DIAL SETTING N T 1 _ 1 1 l J I 1 0 I 1li 10 I 9 i il J 8 I rN N I r 7 I N I INo 1 I i N 6 I N I r T 1 l N...

Page 163: ...0 9 8 TYP I CAL T I ME CURVES TYPE C0 5 OVER CU RRENT RElAY 50 60 II i II I 1111 II I I II IIII I i I I i I I I 1 1 I l I i I I I I I i I I I I I l l T I ME J I Noo l l II il I I II I I I u I D I AL...

Page 164: ...I I N I I T I ME D I AL SETT I NG r t t t J I Ji l l lrr 1 1 I I N I _ I I 10 I I 9cH 1 1 r to 8 7 1 of 6 1 N 1 l Kf t fltt k 4 _ Lt 3 11 1 1 l I t I I I I I n lo oi I I I I r r t i It tr t _ I I I I...

Page 165: ...7 o l OVER CU RRENT RELAY I I I I 50 60 CYCL ES I I I 1 I 1 1 I I I I I I I I 1 T I M E D I AL SETT I N G 1 1 1 1 10 9 1 8 lo 7 1 6 1 _ 5 r 1 r r r f o 3 L _ 2 1 _ 1 2 I I 2 3 5 6 7 8 9 10 12 1 16 1B...

Page 166: ...3 TYP I OAL T I ME CURVES I TYPE co a OVER CURRENT R ELAY I I I I I 1 I I I I I I T I ME 1J l lol I N _ I I I 0 60 CYCL ES I I I i I D I AL SETT I NG i i N 1 r to I I I I iii _ to t 3 lt 5 6 7 8 9 10...

Page 167: ...CURVES TYPE C0 9 OVER CURRENT RELAY 50 60 CYCLES l T I ME D I AL S ETT I NG 1 1 1 10 1 9 8 7 6 5 3 I 2 1 l ooo _ r 1 2 2 3 6 7 8 9 10 12 1 16 18 20 MULT I PLES OF TAP VALUE CU RREN T Curve 418249 Fig...

Page 168: ...1 l rv l 1 1 l l 1 1 1 L l l 1 1 l 1 1 l l L 1 1 1 l 1 1 1 1 1 1 1 I I I 1 1 l 1 l l I I r I l l r I 1 r I I 1 a 3 s a 1 a 9 10 I MiiLTI P LES Of Till VALli CU IEIIT 20 30 0 I l I I I I r t r r j r r...

Page 169: ...8 STUD 16 1 190 32 SC EW rj 1 111 I D I A i e TE I NAL AIIO MOUIITIIIG DETAI LS l__ TEIIMIIIAL IIIJ48EII 5 J 2 r l6 I DI A q HOLES FOil 2 19G 32 NTG SC EWS 3 h i N r f t t I _ I _ i I I L I I I I l r...

Page 170: ...W E S T I N G H O U S E E L E C T R I C C O R P O R A T I O N R E LAY I N STR U M E N T D I VI S I O N N EWAR K N J Printed in U S A w w w E l e c t r i c a l P a r t M a n u a l s c o m...

Page 171: ...f a tapped primary winding a secondary winding Two identical coils SUPERSEDES I L 41 1 33E Denotes change from superseded i ssue on the outer l egs of the lamination structure are con nected to the ma...

Page 172: ...Polarized Direct ional Unit 3 Voltage Polarized Directional Unit 4 Time Over current Unit 5 Indicating Contactor Switch 6 A uxiliary Switch 1 3 Fig 2 Type IRD Relay Without Case Rear View 1 Varistor 2...

Page 173: ...nary Contact Pressure Spring 3 Magnetic A djusting Plugs 4 Upper Bearing Screw 5 Moving Contact 6 Spring A djuster Clarnp 7 Current B ias Vane 2 Fig 4 T ime Overcurrent Unit l Tap B lock 2 Time Dial 3...

Page 174: ..._ __ __ __ __ __ __ __ __ __ __ __ __ ___ _ __ ___ Fig 5 Instantaneous Overcurrent Unit 1 Saturating Transformer 2 Tap Block 3 Stationary Contact 4 Moving Contact Fig 6 Indicating Contactor Switch ICS...

Page 175: ...The instantaneous overcurrent unit is similar in construction to the directional unit The time phase relationship of the two air gap fluxes necessary for the development of torque is achieved by mean...

Page 176: ...AS SMM TilE OIIECTIQIAL ua I T COIITACT CLOSES TO TillE LEFT IISTAITAIIEOWS OVEICUU 1H UI I T WI f El CYLIID 1 IalT SATUIATIIi TUISFOIIIU lED DOT DIIECTIQIAL IHiil LOWU CYLUIOEI UIIT C ASJI S OPUUU S...

Page 177: ...8 2 8 8 4 16 10 10 40 10 20 80 10 cp t t P F ANGLE VA AT 5 AMPS P F ANGLE 39 24 46 36 13 37 35 8 5 34 34 6 0 32 32 4 6 3 1 30 2 9 28 36 9 0 36 3 2 5 0 3 2 3 0 3 0 29 28 2 1 27 26 1 5 2 6 24 0 93 24 49...

Page 178: ...2 12 280 32 4 1 16 10 8 121 2 472 0 Degrees current lags voltage at tap value current t Thermal capacities for short times other than one second may be calculated on the basis of time being inversely...

Page 179: ...10 59 5 04 38 7 262 800 2 5 4 0 1 10 55 5 13 39 8 280 920 3 0 4 4 1 10 5 1 5 37 42 8 312 1008 2 6 3 5 4 8 1 10 47 5 53 42 8 329 1 120 4 0 5 2 1 10 45 5 72 46 0 360 1 2 16 5 0 5 6 1 10 41 5 90 50 3 42...

Page 180: ...880 1056 I R D 7 I R C 7 I RP 7 T I M E O V E R C UR R EN T U N I T S CONTINUOUS ONE SECOND POWER AT AMPERE RATING RATlNGt FACTOR TAP VALUE RANGE TAP AMPERES AMPERES ANGLE CURRENT 0 5 2 5 2 6 4 12 0...

Page 181: ...URRENT 350 365 400 440 530 675 800 360 395 430 470 500 580 660 420 480 550 620 700 850 1020 RANGE TAP CONTINUOUS RATING MPERES AMPERES ANGLE CURRENT AT 3 TIMES TAP VALUE CURRENT AT 10 TIMES TAP VALUE...

Page 182: ...ME CU RVES TYPE C0 2 OVER CURREN T RELAY 50 60 CYCL ES SEC I I I 1 T I ME D I AL SETT I N G 1 1 I 10 1 1 9 8 7 1 6 r r 5 I r 1 4 3 r 2 r 1 r 1 2 2 3 1 4 5 6 7 8 9 10 12 14 16 18 20 MUL T I PL S O F TA...

Page 183: ...3 2 1 1 2 I 2 I I I i I 1 i 1 0 i 9 8 7 6 5 too 14 TYP I CAL T l ME CURVES TYPE C0 5 OVER CU RREN T RELAY 50 60 CYC L ES I I II i I I T I ME I 1 1 1 lol 1 5 t II I 0 1 I I I I I I I I I Al SETT I NG...

Page 184: ...ooo H I Ht T 1 ME 0 I AL SETT I NG f l 1 lO H H l j st r F 9 1 I 2 r t H rl rl f 11 t 1 j 1 oi I 8 _ 4 4 7 f 4o 1 rt f N c l f F 6 _ I i oo r t t t t f t H ot l r I 1 1 t 11 1 t 5 1 1 _ r t_ l t 1 t...

Page 185: ...RENT RELAY i 1 I t 50 60 CYCLES I I I I 1 I l l 1 T I ME D I AL SETT I NG 1 1 1 10 9 c 8 1 7 r o 6 r o 5 r r 1 o _ __ 3 _ __ r r i lo 2 1 1 112 2 3 5 6 7 8 9 10 12 1 16 lB 20 MUL T I PL ES OF TAP VALU...

Page 186: ...I 1 1 10 9 8 7 6 l 5 t 3 I TYP I CAL T I ME CURVES TYPE co a OVER CUR REN T RELAY I I I I I T I ME T I I I 0 60 CYCl ES I D I AL SETT I NG I fi O o I r 3 lt 5 6 7 8 9 10 12 11 16 18 20 MUL T I PLES Of...

Page 187: ...ES TYPE C0 9 OVER CURRENT RELAY 50 60 CYCL ES 1 1 T I ME D I AL S ETT I NG 1 1 10 I I 9 8 7 6 1 5 3 2 1 r r 1 2 2 3 5 6 7 8 9 10 12 111 16 18 20 MULT I PLES OF TAP VALUE CURRENT Curve 418249 Fig 15 Ty...

Page 188: ...1 1 y 1 1 1 1 1 l 1 1 fl 1 I 1 1 1 1 1 I I r 1 1 l 1 L l l 1 I 1 t f 2 3 fl 6 7 I 9 10 I I 20 30 0 f 1 f f f l to r 1 1 r 1 I 1 r 20 30 0 1 1 10 i 7 s 3 2 1 2 MULTI P LES OF TAr YWI C UIII 11T 288865...

Page 189: ...stantaneous Circuit When Directional Unit is Voltage Polarized 10 t n rn rr ffi t ffi1f t i _ I tL TYPICAL TIME CURVES Iff OF CURRENT POLARIZED DIRECTIONAL OVERCURRENT RELAY 20 30 40 50 Curve 471060 A...

Page 190: ...volt and 2 amperes with the current lagging voltage by 60 For the directional units used with the 4 to 12 ampere range time overcurrent units the minimum pick up is 1 ampere for the current polarized...

Page 191: ...voltage polarizing circuit at the terminals of the relay I L 4 1 1 33 F A DJ U S T M E N T S A N D M A I N T E N A N C E The proper adjustments to insure correct operation of this relay have b een ma...

Page 192: ...ent unit pos DEVICE NUMBER CHART 67N OIRECTIONAL OVERCURRENT GROUND RELAY TYPE IRP D DIRECTIONAL UNIT tO T IME OVERCURRENT UNIT 1 INSTANTANEOUS 0 C UNIT liST SATURATING TRANSFORMER FOR INST 0 C UNIT I...

Page 193: ...D CURRENT SOURCE Q I S 4 I S CO I qs t67N 2 52 a 67N 3 I ST S E C CS 1 _____ C D NEG 289B508 Fig 21 External Schematic of the IRD Relay for Ground Fault Protection STATION BUS 67N 8 RELAYS co D liST 6...

Page 194: ...following procedure for calibrating the 24 relay if the relay has been taken apart for repairs or the adjustments have been disturbed This procedure should not be used unle ss it is apparent that the...

Page 195: ...circuits of the current polar ized relays IRC and IRD current polarized unit are open circuited Upon completion of either a or b current is applied to the operating circuit terminals as per Table 2 Pl...

Page 196: ...cked up This can be done by turning the relay upside down Then screw up the core screw until the moving core starts rotating Now back off the core screw until the moving core stops rotating This indic...

Page 197: ...act Closing Direction Then the plug is screwed in Until Spuri ous Torque is Reversed t Short circuit the voltage polarizing circuit at the relay terminals before making the above adjustment TABLE I l...

Page 198: ...CREW FOR T H I C K P WlO L US 190 32 STUO OIA T RMI o IAL AW D ME Ut TI NCJ DElAI L OIA 4 0LES f OR 190 32 MT DCR f WS PANEL c UTO lT t ORILLINGr FOR SEMI FLU CQH MT i P _NEL DRI LL 1 G OR C JTOU T PR...

Page 199: ...S I O N S I N I N C H E S I DI A H o L E S F OR 4 1 90 32 MTG SCREWS z _ I G c 1 1 8 I co PANEL CUTC UT D RI L L I N G F O R S E MI F L U SH MT G TL f M I NAL N U M BER PA N E L D R I L L I N C1 OR C...

Page 200: ...w w w E l e c t r i c a l P a r t M a n u a l s c o m...

Page 201: ...w w w E l e c t r i c a l P a r t M a n u a l s c o m...

Page 202: ...W E S T I N G H O U S E E L E C T R I C C O R P O R A T I O N R E LAY I N STR U M E N T D IVI S I O N N EWAR K N J Printed i n U S A w w w E l e c t r i c a l P a r t M a n u a l s c o m...

Page 203: ...f a tapped primary winding a secondary winding Two identical coils SUPERSEDES I L 4 1 1 33C Denotes change from superseded i ssue on the outer legs of the l amination structure are con nected to the...

Page 204: ...olarlzea Direct Ional Unit 3 Voltage Polarlzea Directional Unit 4 Time Over current Unit 5 Ina eating Contactor Switch 6 A uxiliary Switch 1 3 Fig 2 Type IRD Relay Without Case Rear View 1 Varistor 2...

Page 205: ...ary Contact Pressure Spring 3 Magnetic Adjusting Plugs 4 Upper Bearing Screw 5 Moving Contact 6 Spring Adjuster Clamp 7 Current B ias Vane 2 7 Fig 4 Time Overcurrent Unit l Tap B lock 2 Time Dial 3 Co...

Page 206: ..._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Fig 5 Instantaneous Overcurrent Unit J Saturating Transformer 2 Tap Block 3 Stationary Contact 4 Moving Contact Fig 6 Indicating Contactor Switch ICS 4 w w w E l e...

Page 207: ...eo u s O vercurrent U n i t 1 The instantaneou overcurrent unit is similar in construction to the directional unit The time phase relationship of the two air gap fluxes necessary for the development o...

Page 208: ...ECTIOIAL UII IT COMTACT CLOSES TO TilE LEFT IUTAIITAIEOU O IEIC IUEMT WilT UH EI CYLIIKI MIT UTUIATIIIQ TIAISFOIMll lED DOT DIIECTIOIAL IT LOIIIEI CYLIIIIEI UIIIT IUUCTI UIIT CMASSIS Of 1AJED SMOI TII...

Page 209: ...33 29 5 1 45 40 38 34 30 28 21 16 15 12 1 1 3 1 24 20 18 16 15 24 13 8 5 6 0 4 6 2 9 9 0 5 0 3 0 2 1 1 5 0 93 6 5 3 3 2 1 1 4 1 1 0 7 2 4 1 2 0 7 0 6 0 37 0 24 0 43 0 27 0 20 0 15 0 1 1 0 08 0 40 0 25...

Page 210: ...12 12 280 32 4 1 16 10 8 121 2 472 0 Degrees cu ent lags voltage at tap value current Thermal capacities for short times other than one second may be calculated on the basis of time being inversely p...

Page 211: ...7 9 73 6 700 2850 2 0 3 1 1 10 59 5 04 38 7 262 800 2 5 4 0 110 55 5 13 39 8 280 920 3 0 4 4 1 10 5 1 5 37 42 8 312 1008 2 6 3 5 4 8 1 10 47 5 53 42 8 329 1 120 4 0 5 2 1 10 45 5 72 46 0 360 1216 5 0...

Page 212: ...C 7 I RP 7 TI M E O V E R C UR R EN T U N I T S CONTINUOUS RATING AMPERES 2 2 2 2 5 2 8 3 4 4 0 4 4 8 8 8 9 7 10 4 1 1 2 1 2 5 13 7 16 18 8 19 3 20 8 22 5 25 28 ONE SECOND RATING AMPERES 88 88 88 88...

Page 213: ...550 620 700 850 1020 I R D 1 1 IRC 1 1 I R P 1 1 OVERCURRENT UNITS CONTINUOUS ONE SECOND RATING RATING TAP AMPERES AMPERES 0 5 0 6 0 8 1 0 1 5 2 0 2 5 2 0 2 5 3 0 3 5 4 0 5 0 6 0 4 0 5 0 6 0 7 0 8 0 1...

Page 214: ...YP E C0 2 I I I OVER CU RRENT RtlAY 50 60 CYCLES I I I I I I I I 1 I I 1 I I I I I I 1 I I I I I T I ME D I Al SETT I N G I I I 1 1 I 10 9 N I 8 7 I N6 I loo l r 5 r I N 1 41 I 3 I I t 2 r r I r 1 r _...

Page 215: ...1 0 a 9 7 I 6 5 li 1 11 TYP I CAL T l ME CURVES TYPE C0 5 OVER CURREN T RELAY 50 60 CYCL ES i i I l l I II II I I I I I I I I I I I T I ME D 1 f Il l I ll looiJ I ll 5 i I I I I I I I I I f I I AL SE...

Page 216: ...r 1 I 1 r 1 L 11 1 1 I I N i o I 10 i i P4 l 9 1 f c 1 N _ i ___ __ _ 8 r 1 X 7 1 _I_ 6 J 5 r 4 I I 3 t r i t t J t o H o I I 2 l l 1 I f I 1 2 _ i i l l i H t j tn f 1 t j 2 3 I I r I 5 I I I I I L...

Page 217: ...l 3 2 3 5 I I 10 I I I I I TYP I CAL T I ME CU VES TYPE C0 7 OVER CURRENT RELAY 50 60 CYCLES T r r r I T I M E D l AL SETT I N G 1 1 T 1 I r 1 r I _ r r _ 6 7 8 9 10 12 11l 16 18 20 MULT I PL ES OF TA...

Page 218: ...YPE C0 8 OVER CURRENT RELAY e0 60 CYCL ES I I I T I ME D I AL SETT I NG 1 1 10 9 8 7 6 1 5 1 ro o 3 r I 2 1 _ 1 _ _ 1 I 1 2 2 3 1 5 6 7 8 9 10 12 11 te 18 ro MUL T I P L ES O F TAP VALUE CURRENT Curve...

Page 219: ...NT RELAY 50 60 CYCLES ll T I ME D I AL S ETT I NG 1 1 10 ll 9 8 7 6 5 3 2 to L 1 r r loo 1 2 r 2 3 5 6 7 8 9 10 12 11 1 16 18 20 MULT I PLES OF TAP VALU E CU RRENT Curve 418249 Fig 15 Typical Time Cur...

Page 220: ...f l L 1 1 i 1 1 I I l 1 1 I ll 1 1 Ill 1 1 I I r 1 1 l I 1 1 1 i I r 2 3 II f 8 7 I 9 10 I r I IWLTl I LES Of Till VAUI CU IfiiT 20 30 110 t I I t 1 I f 1 f r _ r 1 1 10 g I 7 i 2 1 2 2898655 TYP I CA...

Page 221: ...peres with the current lagging voltage by 60 For the directional units used with the 4 to 1 2 ampere range time overcurrent units the minimum pick up is 1 ampere for the current polarized dtrec tional...

Page 222: ...circuit the voltage polarizing circuit at the terminals of the relay 20 A D J U S T M E N T S A N D M A I N T E N A N C E The proper adjustments to insure correct operation of this relay have been ma...

Page 223: ...urrent unit Pas DEVICE NUMBER CHART 67N DIRECTIONAL OVERCURRENT GROUND RELAY TYPE IRP D DIRECTIONAL UNIT CO T IME OVERCURRENT UNIT t INSTANTANEOU S 0 C UNIT liST SATURATING TRANSFORMER FOR INST 0 C U...

Page 224: ...f c_s_ _1_ _ _ c o NEG __ _ _ 289B507 Fig 1 9 External Schematic of the IRC Relay for Ground Fault Protection RELAYS DEVICE NUMBER CHART 67N OIRECTIDNAL OVERCURRENT GROUND RELAY TYPE IRO DIU UPPER DI...

Page 225: ...he contact C al i bration Use the following procedure for calibrating the relay if the relay has been taken apart for repairs or the adjustments have been disturbed This procedure should not be used u...

Page 226: ...d relays IRC and IRD current polarized unit are open circuited Upon completion of either a or b current is applied to the operating circuit terminals as per 24 Table 2 Plug adjustment is then made per...

Page 227: ...n the assembly is taken up and where the moving core just separates from the stationary core screw Back off the core screw approximately one turn and lock in place This prevents the moving core from s...

Page 228: ...Closing Direction Then the plug is screwed in Until Spuri ous Torque is Reversed t Short circuit the voltage polarizing circuit at the relay terminals before making the above adjustment TABL E I l l T...

Page 229: ...Wli l US 190 3 STUD DIA T RMI IAL AW D MCUHT I NCJ DE TA I L S k OIA 4 0LE S FOR 190 32 MT CR WS PANEL C UTOUT l DRILLIWGr FOR SEI 1 t LU C H MTG TERMINAL NUM IER PA NEL DRILL OR C UTOU T FOR ROJa C...

Page 230: ...DI A H O L E F OR 4 1 90 32 MTG SCREWS Z I _ I G c 2 I a 1 PI N E L CUTO UT D RI L L I N G F O R S E MI FLU SH M T G Tf l 1 I N AL I N U M BER PA N E L D f I L L I N O R CUT O U T FOR r R C E C TI o...

Reviews: