background image

  

4 213 321 V01 KDT RegelModul Solar EN.docx 

1 / 95 

     

CST instructions TopTronic

®

 E 

Solar TTE-SOL control module

 

 

Content

 

1.

 

Controller generation TopTronic

®

 E ............................................................................. 5

 

1.1.

 

System overview .................................................................................................................... 5

 

2.

 

Solar module TTE-SOL .................................................................................................. 6

 

2.1.

 

Module expansion TTE-FE .................................................................................................... 6

 

2.2.

 

Control module TTE-(R)BM ................................................................................................... 7

 

3.

 

Technical data ................................................................................................................ 8

 

4.

 

Setting the address of modules (DIP switches) .......................................................... 9

 

4.1.

 

Setting the address of control modules ............................................................................. 10

 

4.2.

 

Functional overview ............................................................................................................ 11

 

4.2.1.

 

Solar module TTE-SOL ................................................................................................... 11

 

5.

 

Overview of menu structure/function levels TTE-SOL ............................................. 12

 

6.

 

Basic settings ............................................................................................................... 13

 

6.1.

 

Access levels / code input .................................................................................................. 13

 

6.2.

 

Hydraulic applications ......................................................................................................... 13

 

6.3.

 

Hydraulic options ................................................................................................................ 13

 

7.

 

Overview of hydraulic applications TTE-SOL ............................................................ 14

 

8.

 

Overview of input/output allocation hydraulic applications TTE-WEZ .................... 25

 

8.1.

 

Hydraulics input/output table ............................................................................................. 25

 

8.2.

 

Options input/output table .................................................................................................. 27

 

9.

 

Information (reference/actual values, operating states) ........................................... 28

 

10.

 

Adapting function name .............................................................................................. 28

 

11.

 

Function groups and control functions ..................................................................... 29

 

11.1.

 

"General" function group ................................................................................................ 29

 

11.2.

 

Parameter overview general information........................................................................ 30

 

11.3.

 

Function name .................................................................................................................. 32

 

11.4.

 

Parameter overview general function name ................................................................... 32

 

11.5.

 

Configuration .................................................................................................................... 32

 

11.5.1.

 

Commands ..................................................................................................................... 32

 

11.5.2.

 

Reference value increase/decrease ................................................................................ 33

 

Summary of Contents for TopTronic E Solar TTE-SOL

Page 1: ... TTE SOL 12 6 Basic settings 13 6 1 Access levels code input 13 6 2 Hydraulic applications 13 6 3 Hydraulic options 13 7 Overview of hydraulic applications TTE SOL 14 8 Overview of input output allocation hydraulic applications TTE WEZ 25 8 1 Hydraulics input output table 25 8 2 Options input output table 27 9 Information reference actual values operating states 28 10 Adapting function name 28 11 ...

Page 2: ...nu General 0 10V PWM 43 11 13 Charging with plate heat exchanger 45 11 14 PWTz central plate heat exchanger 45 11 14 1 Menu General PWTZ pump heat exchanger central 45 11 15 Collector bypass option bypass 46 11 15 1 Menu General bypass bypass option 47 11 16 High temperature discharge HTE option 47 11 16 1 High temperature discharge storage tank option 48 11 16 2 Menu General HTE high temperature ...

Page 3: ...005 67 12 4 5 Active collector protection night cooling storage tank 08 074 68 12 4 6 Frost protection 08 013 68 12 4 7 Overheating protection 08 005 69 12 4 8 Priority overheating protection 70 12 5 Collector starting aid 71 12 5 1 Menu Collector Parameters Collector protection starting aid 72 12 6 HMET FLOW 74 12 6 1 Pump speed control in conjunction with collectors 74 12 6 2 Energy yield calcul...

Page 4: ...Menu Solar storage tank PPS discharge option 86 13 1 8 Plate heat exchanger decentralised PWTd option 87 13 1 9 Menu Solar storage tank PWTDZ plate heat exchanger decentralised option 87 13 1 10 Return flow increase option 88 13 1 11 Menu Solar storage tank RLA return flow increase option 89 13 1 12 ZONLA option zone charging 90 13 1 13 Menu Solar storage tanks ZONLA option zone charging 92 13 2 F...

Page 5: ...re connected together via the Hoval CAN bus The individual modules can be set using one or more control modules A maximum of 16 intelligent modules can be connected Of these max 8 modules can be equipped as TTE H Gen modules Max two TTW FE expansion modules can be connected to the intelligent modules Exception max 1 expansion module for TTE H Gen module 1 1 System overview ...

Page 6: ... out GB GB L OP VA3 230V max 4AT 2 Solar module TTE SOL The solar module can be used in a group and also as a stand alone unit The hardware of the three modules HK WW SOL PS is identical Each module is available as an individual article however different software and further details 2 1 Module expansion TTE FE Universal module for hardware expansion of inputs outputs Can be used for each control m...

Page 7: ...low rate sensor T temperature Netz In Mains input 230V 13A slow blow Netz Out Mains output 230V max 4 A slow blow SK VA3 Safety chain VA3 output VA1 2 3 Variable output 1 2 3 VA10V PWM Variable output 0 10V PWM VE1 2 3 IMP Variable input 1 2 IMP sensor or pulse VE10V 1 Variable input 0 10V 2 2 Control module TTE R BM ...

Page 8: ... 2 Inputs flow rate sensor 1 1 Pulse input 1 can be switched over to sensor 1 can be switched over to sensor Voltage measuring circuit 15 V with protective isolation 2 9 kV 15 V with protective isolation 2 9 kV Expansion module expansion max number 2 Casing Assembly Top hat rail mounting 35x15 Top hat rail mounting 35x15 Dimensions W H D in mm incl plug 150x100x75 150x100x75 Ambient temperature 0 ...

Page 9: ...dules were selected so that there is no need to change the address settings as long as no module occurs twice Addr Factory setting Addr Factory setting 4 3 2 1 4 3 2 1 Off 1 TTE WEZ TTE FW Off 9 TTE HK WW On On 4 3 2 1 4 3 2 1 Off 2 Off 10 On On 4 3 2 1 4 3 2 1 Off 3 Off 11 On On 4 3 2 1 4 3 2 1 Off 4 Off 12 TTE GLT On On 0 10V 4 3 2 1 4 3 2 1 Off 5 Off 13 TTE MWA On On M Bus 4 3 2 1 4 3 2 1 Off 6...

Page 10: ...TTE GLT TTE MWA TTE HK WW TTE PS TTE SOL TTE WEZ TTE FW TTE GLT TTE MWA TTE HK WW TTE PS TTE SOL TTE WEZ TTE FW TTE GLT TTE MWA TTE HK WW TTE PS TTE SOL TTE WEZ TTE FW TTE GLT TTE MWA TTE HK WW TTE PS TTE SOL 9 41 42 43 10 44 45 46 11 47 48 49 12 50 51 52 13 53 54 55 14 56 57 58 15 59 60 61 16 62 63 BM w o HC RBM HK1 RBM HK2 RBM HK3 BM w o HC RBM HK1 RBM HK2 BM w o HC RBM HK1 RBM HK2 RBM HK3 BM w ...

Page 11: ... 4 TTE SOL X X X X X X X X 1 2 TTE FE Solar module Collector fields Consumer For more complex systems 1 4 2 Functional overview 4 2 1 Solar module TTE SOL 1 In the TTE SOL relatively complex systems can be implemented using max 1 2 additional TTE FE module expansions see Hoval heating systems ...

Page 12: ...ction group FunctionGroup 23 HMET FLOW TKV Collector 2 FunctionName Collector 2 DefaultValue Function FunctionNumber 1 Configuration Information Operation DisplayGroup Function name Parameters PPS Pump heat ex dc RTI HWCh ZONCh Solar storage tank 2 FunctionName Solar storage tank 2 DefaultValue Solar storage tank 3 FunctionName Solar storage tank 3 DefaultValue Solar storage tank 4 FunctionName So...

Page 13: ...rs to the correct value At the same time this defines the input output allocations of the functions If a hydraulic application is adjusted this means the parameters in the individual functions are reset to their factory setting at the same time Consequently during commissioning of the control system always set the hydraulic application first The hydraulic application is set in the menu General Gen...

Page 14: ...lhovalhovalho valhovalhovalh ovalhovalhoval h T K O 1 T 2 PS1 T1U TTE SOL Hydr 1 PS1 PBL PEL T1U T1O T2U T2O TTE SOL TTE FE Hydr 2 T K O 1 PS1 U12 T 1 U T 2 U TTE SOL Hydr 3 T K O 1 PS1 T2U TTE SOL TTE FE PBL T1O PEL T3O T3U T1U U12 Hydr 4 T K O 1 PS1 PWTz T W V z U12 Hydr 5 TTE SOL TTE FE T 1 U T 2 U T K O 1 PS1 PWTz T2U T W V z PBL T1O PEL T3O T3U T1U U12 TTE SOL TTE FE TTE FE Hydr 6 T K O 1 T2U...

Page 15: ...E T K O 1 PS1 PSL2 PSL1 T 2 U T 1 U TTE SOL TTE FE Hydr 9 T W V z T K O 1 PS1 PSL2 PSL1 PBL PEL T3O T3U T1O T1U T2U T W V z Hydr 10 TTE SOL TTE FE TTE FE T K O 1 PS1 T3U T1U T2U U12 U23 Hydr 11 TTE SOL TTE FE T K O 1 PS1 KSPF KSPF T3U T2U U12 PBL T1O PEL T4O T4U T1U U23 Hydr 12 TTE SOL TTE FE TTE FE T K O 1 ...

Page 16: ...n neues Shape zu nehmen hovhovalhoval hovalhovalhova lhovalhovalhov alhovalhovalho valhovalhovalh ovalhovalhoval hovalhovalhova lhovalhovalhov alhovalhovalho valhovalhovalh ovalhovalhoval h T W V z U12 U23 T1U T3U T2U Hydr 13 T K O 1 SP1 T3U T2U T W V z PBL T1O PEL T4O T4U T1U U23 U12 PWTz Hydr 14 TTE SOL TTE FE TTE FE T K O 1 PSL3 PSL2 T 3 U T 2 U PSL1 T 1 U TTE SOL TTE FE Hydr 15 T K O 1 ...

Page 17: ...SL2 T3U PSL1 PBL KSPF PEL T1O T4O T2U T4U T1U TTE SOL TTE FE TTE FE Hydr 16 T K O 1 PSL3 PSL1 T 1 U PSL2 PS1 T W V z T 2 U T 3 U Hydr 17 TTE SOL TTE FE T K O 1 PSL3 T3U PSL2 PS1 T W V z Hydr 18 T2U TTE SOL TTE FE TTE FE PSL1 PBL T1O PEL T4O T4U T1U T K O 1 ...

Page 18: ... O 1 PSL3 PSL2 Dies ist ein unerlaubter Weg Gehen Sie einen Schritt zurück oder löschen Sie dieses Shape Sie haben die Möglichkeit ein neues Shape zu nehmen hovhovalhoval hovalhovalhova lhovalhovalhov alhovalhovalho valhovalhovalh ovalhovalhoval hovalhovalhova lhovalhovalhov alhovalhovalho valhovalhovalh ovalhovalhoval h T 3 U T 2 U PSL1 T 1 U PSL4 T 4 U TTE SOL TTE FE Hydr 21 T K O 1 ...

Page 19: ...1 PS2 U12 Hydr 24 TTE SOL TTE FE T K O 1 T K O 2 T2U PBL T1O PEL T3O T3U T1U PS1 PS2 U12 Hydr 25 TTE SOL TTE FE TTE FE T K O 1 T K O 2 T1U T2U WT PS1 PWTz PS2 T W V z Hydr 26 TTE SOL TTE FE U12 T K O 1 T K O 2 PS1 PWTz PS2 T W V z PBL T1O PEL T3O T3U T1U T2U Hydr 27 TTE SOL TTE FE TTE FE U12 T K O 1 T K O 2 PSL2 PSL1 T1U T2U TTE SOL TTE FE PS1 PS2 T W V z Hydr 28 T K O 1 T K O 2 ...

Page 20: ...T2U TTE SOL TTE FE TTE FE PSL1 PBL T1O PEL T3O T3U T1U Hydr 29 PS1 PS2 T W V z T K O 1 T K O 2 T1U T3U T2U PS1 PS2 U23 U12 Hydr 30 TTE FE TTE SOL T K O 1 T K O 2 PS1 PS2 T2U T3U U12 U23 PBL T1O PEL T4O T4U T1U Hydr 31 TTE SOL TTE FE TTE FE T K O 1 T K O 2 ...

Page 21: ...2U U23 U12 T W V z PS1 PWTz PS2 Hydr 32 TTE SOL TTE FE T K O 1 T K O 2 WT T3U T2U PBL T1O PEL T4O T4U T1U PS1 PWTz PS2 T W V z U23 U12 Hydr 33 TTE SOL TTE FE TTE FE T K O 1 T K O 2 KSPF T2U T3U T1U T4U U12 U23 PS1 PS2 U34 Hydr 34 TTE SOL TTE FE T K O 1 T K O 2 ...

Page 22: ...ben die Möglichkeit ein neues Shape zu nehmen hovhovalhoval hovalhovalhova lhovalhovalhov alhovalhovalho valhovalhovalh ovalhovalhoval hovalhovalhova lhovalhovalhov alhovalhovalho valhovalhovalh ovalhovalhoval h KSPF T2U T1U PS1 PWTz T W V z AV1 AV2 Hydr 36 TTE SOL TTE FE T K O 1 KSPF T2U T1U PS1 PWTz T3U T W V z AV1 AV2 AV3 Hydr 37 TTE SOL TTE FE T K O 1 KSPF T2U T4U T1U T3U PS1 PWTz T W V z AV2 ...

Page 23: ...1 PWTz PS2 T W V z AV1 T1U AV2 Hydr 39 TTE SOL TTE FE T K O 1 T K O 2 KSPF T2U T1U T3U AV2 AV1 PS1 PWTz PS2 T W V z AV3 Hydr 40 TTE SOL TTE FE T K O 1 T K O 2 KSPF T2U T4U T1U T3U PS1 PWTz PS2 T W V z AV2 AV3 AV4 AV1 Hydr 41 TTE SOL TTE FE TTE FE T K O 1 T K O 2 ...

Page 24: ...ature storage tank 3 top PEL Pump discharging T3U Temperature storage tank 3 bottom PS1 Pump solar 1 T4O Temperature storage tank 4 top PS2 Pump solar 2 T4U Temperature storage tank 4 bottom PSL1 Pump storage tank charging 1 TKO1 Temperature collector 1 PSL2 Pump storage tank charging 2 TKO2 Temperature collector 2 PSL3 Pump storage tank charging 3 TWVz Temperature heat exchanger supply central PS...

Page 25: ...4 213 321 V01 KDT RegelModul Solar EN docx 25 95 8 Overview of input output allocation hydraulic applications TTE WEZ 8 1 Hydraulics input output table ...

Page 26: ...4 213 321 V01 KDT RegelModul Solar EN docx 26 95 ...

Page 27: ...put output table Caution Electromechanical relay outputs speed control via PWM 0 10V possible for solar pumps PS solar charging pumps PSL heat exchanger pumps PWTz PWTd solid fuel boiler pump PFK fresh water pump PFW The FRIWA option is not yet available at present ...

Page 28: ...es etc The depth of information depends on the particular user level 10 Adapting function name In the Function name menu it is possible to assign a freely definable name in addition to the standard name of each function This is then transferred to the operator level e g for operating mode selection Both names are displayed in the parameter level Sample function name Standard Collector 1 free name ...

Page 29: ...lay test Clock date CIRCU LEGIO 1 2 3 4 7 9 10 11 12 13 14 17 18 19 0 10V PWM 20 Bootloader 96 Sensor balancing Thermostat 5 Commis sioning 97 Info values Differential controller 6 Pump heat ex c 8 16 21 11 Function groups and control functions 11 1 General function group In the General function group values must be set and settings made that are required for all function modules Time date input o...

Page 30: ...ypass BY 3 7 22 100 UBY switching valve bypass coll output 0 0 1 UBY output switching valve bypass collector 4 7 00 120 TWVz heat exchanger central temp C 0 0 150 0 Temperature heat exchanger TWV fct heat exchanger central 3 7 22 105 PWTz heat exchanger pump speed central 0 0 100 PWTz speed pump heat exchange central 4 7 20 058 TLE legionella temperature C 0 0 0 0 Current temperature for the legio...

Page 31: ...A3 thermostat 3 output 0 0 1 THA3 thermostat 3 output 4 7 21 014 THF3 actual setpt thermostatic sensor 3 C 0 0 0 0 THF3 actual thermostat sensor 3 4 7 22 005 DFA1 diff control 1 output 0 0 1 DFA1 diff control 1 output 4 7 21 015 DF1 1 actual diff control 1 sensor 1 C 0 0 0 0 DF1 1 actual diff control 1 sensor 1 4 7 21 018 DF2 1 actual diff control 1 sensor 2 C 0 0 0 0 DF2 1 actual diff control 1 s...

Page 32: ...e standard name of each function This is then transferred to the operator level e g for operating mode selection Both names are displayed in the parameter level 11 4 Parameter overview general function name Parameters Designation Value Min Max Comments R W 04 005 Function name General 13 0 Function as in a HVAC function e g heating circuit control process water heating 0 5 11 5 Configuration In th...

Page 33: ...e reduction is active If several inputs are configured the priority sequence is as follows active before inactive before undefined In addition to the contacts a reference value increase reduction can also be triggered by the weather forecast e g a DHW reference value reduction is triggered once a particular global radiation value is reached Area of effect If a System reference value increase is ac...

Page 34: ...ter Setpoint incr offset flow setpoint heating 0 K HC 1 2 3 Parameters 07 110 Setpoint incr offset flow setpoint cooling 0 K HC 1 2 3 Parameters 07 111 Setpoint red offset flow setpoint heating 0 K HC 1 2 3 Parameters 07 112 Setpoint red offset flow setpoint cooling 0 K HC 1 2 3 Parameters 07 113 Setpoint incr offset hot water setpoint 0 K Hot water Parameters 05 078 Setpoint reduction offset hot ...

Page 35: ...mum temperature with the fewest possible number of charging cycles As a result of the solar input the controller attempts to maintain an even increase at the collector sensor during the entire charging The increase is limited downwards using a parameter 08 064 11 7 1 0 to yield parallel charging The reference value for speed control results from the temperature at the storage tank sensor plus an i...

Page 36: ...1O reload ref 08 069 hys 08 063 T1O T2U Diffon 08 077 then PEL on T1O reload ref 08 069 or T1O T2U Diffoff 08 078 then PEL off 11 8 2 Charging PBL If the solar yield is no longer sufficient for charging the solar storage tank the heat can be transferred from the additional storage tank or loaded back The solar storage tank is charged as soon as the reference value for recharging TOxref on the sola...

Page 37: ... to the reference value 08 062 3 Reference charging according to yield charging takes place according to yield 08 051 in parallel in swing operation or according to the priority of the storage tanks 08 056 to reference value 3 3 08 051 Setpoint charging switching high yield 50 30 100 If the comparison between current solar yield and nominal output produces a factor above the setting value operatio...

Page 38: ...8 062 is immediately reactivated The calculated solar nominal output is directly related and is taken into account in this 4 4 08 075 Recharging switch on difference PBL 8 K 5 0 50 0 If the temperature at the storage tank sensor is less than the active storage tank reference value switch on the hysteresis 08 063 and if the temperature difference in relation to the recharging sensor rises above the...

Page 39: ... thermostat sensor 1 0 C 20 0 250 0 THF1 ref thermostat sensor 1 4 4 29 063 Thermostat 1 switching difference 3 K 1 0 90 0 Thermostat 1 switching difference 4 4 32 029 Alloc outp THA2 thermostat 2 0 OFF Allocation output THA2 thermostat 2 0 OFF 1 VA1 2 VA2 3 VA3 9 VA1 FE1 10 VA2 FE1 11 VA3 FE1 13 VA1 FE2 14 VA2 FE2 15 VA3 FE2 4 4 30 037 Alloc inp THF2 thermostat sensor 2 0 OFF Allocation input THF...

Page 40: ...p DFA1 diff ctrl 1 0 OFF Allocation output DFA1 diff control 1 0 OFF 1 VA1 2 VA2 3 VA3 9 VA1 FE1 10 VA2 FE1 11 VA3 FE 13 VA1 FE2 14 VA2 FE2 15 VA3 FE2 4 4 30 039 Alloc inp DF1 1 diff ctrl 1 sensor 1 0 OFF Allocation input DF1 1 diff control 1 sensor 1 0 OFF 1 VE1 2 VE2 3 VE3 5 FVT T 7 VE1 FE1 8 VE2 FE1 9 VE3 FE1 11 FVT T FE1 13 VE1 FE2 14 VE2 FE2 15 VE3 FE2 17 FVT T FE2 4 4 30 042 Alloc inp DF2 1 ...

Page 41: ...ation output DFA3 diff control 3 0 OFF 1 VA1 2 VA2 3 VA3 9 VA1 FE1 10 VA2 FE1 11 VA3 FE1 13 VA1 FE2 14 VA2 FE2 15 VA3 FE2 4 4 30 041 Alloc inp DF1 3 diff ctrl 3 sensor 1 0 OFF Allocation input DF1 3 diff control 3 sensor 1 0 OFF 1 VE1 2 VE2 3 VE3 5 FVT T 7 VE1 FE1 8 VE2 FE1 9 VE3 FE1 11 FVT T FE1 13 VE1 FE2 14 VE2 FE2 15 VE3 FE2 17 FVT T FE2 4 4 30 044 Alloc inp DF2 3 diff ctrl 3 sensor 2 0 OFF Al...

Page 42: ... main pump is limited to 30 Control PWM The 0 10V PWM output must be allocated and configured as PWM If the function is inactive the output must be configured to not allocated The input parameter his output one to one That means 75 is output as PWM with a mark to space ratio of 3 to 1 Using the Configuration output parameter it is possible for the signal to be output inverted as well Control 0 10 ...

Page 43: ... 20 039 Characteristic curve 1 vltg Y1 at X1 0 V 0 0 10 0 4 4 20 040 Characteristic curve 1 X2 100 C 0 0 100 0 4 4 20 041 Characteristic curve 1 vltg Y2 at X2 10 V 0 0 10 0 4 4 20 054 Char curve 1 switch off voltage 0 V 0 0 10 0 5 5 33 101 Configuration 0 10V PWM FE 1 2 0 3 Configuration 0 10V PWM output 1 0 OFF 1 0 10V 2 PWM 0 0V 3 PWM inverted 0 10V 3 3 20 042 Characteristic curve 2 X1 0 C 0 0 1...

Page 44: ...n 0 10V PWM output 1 0 OFF 1 0 10V 2 PWM 0 0V 3 PWM inverted 0 10V 3 3 20 046 Characteristic curve 3 X1 0 C 0 0 100 0 4 4 20 047 Characteristic curve 3 vltg Y1 at X1 0 V 0 0 10 0 4 4 20 048 Characteristic curve 3 X2 100 C 0 0 100 0 4 4 20 049 Characteristic curve 3 vltg Y2 at X2 10 V 0 0 10 0 4 4 20 056 Char curve 3 switch off voltage 0 V 0 0 10 0 5 5 ...

Page 45: ... reached The controller now attempts to maintain the charging reference value on the central heat exchanger flow temperature sensor by controlling the speed of rotation The charging reference value depends on the selected charging strategy yield or reference as well as combination of the two If the temperature difference TKO to TxU is less than the Increase off the pumps switch off 11 14 1 Menu Ge...

Page 46: ...t or for minimising heat losses The valve produces a short circuit bypass in the collector circuit so that no cold medium can get into the consumers Only when the sensor TBY in the flow of the collector circuit reaches the temperature of the storage tank sensor bottom TxU plus switch off difference 08 002 plus 2K is charging of the storage tank enabled TBY TxU switch off difference 08 002 2 K then...

Page 47: ... the storage tank sensor bottom TUx Bypass ON if TBY TKV TUx DIFF off E 08 002 2K Bypass OFF if TBY TKV TUx DIFF off E 08 002 4 4 30 019 Alloc inp TBY bypass coll temp 0 OFF Allocation input VE1 VE2 VE3 IMP VE1 FE 1 etc 4 4 32 007 Alloc outp UBY sw valve byp collector 0 OFF Allocation output VA1 VA2 VA3 VA1 FE 1 etc 4 4 11 16 High temperature discharge HTE option The high temperature discharge is ...

Page 48: ...ry energy dissipation In this case the temperature can be dissipated by a hot air blower or a radiator for example The function is only ever active on that storage tank for which the option was selected If the maximum storage tank temperature Txmax 08 059 on the storage tank sensor top TxO is undershot by 5K the mandatory energy dissipation procedure is terminated HTE on if T1O T1max 08 059 HTE of...

Page 49: ...harge storage tank If TUx or TxO Tmax 08 059 HTE active all storage tanks at Tmax If TUx or TxO Tmax 08 059 5K HTE blocked one storage tank below Tmax 5K 4 4 32 008 Alloc outp THE high temp discharge 0 OFF Allocation output VA1 VA2 VA3 VA1 FE 1 etc 4 4 08 111 Alarm message option 0 0 1 ERROR option error info messages are additionally redirected to the output here 3 3 32 009 Alloc outp alarm messa...

Page 50: ...ram e g PWZ on if TWZ 43 C and impulse input closed and enable by the time program active PWZ off if TWZ 45 C or timer for run time of pump PWZ has expired or the block by time program is active 8 Impulse controlled and by time program If the circulation circuit enable temperature 05 054 on sensor TWZ is undershot by the differential gap 2 K circulation pump PWZ is switched on An impulse is trigge...

Page 51: ...e defines the run time of the pump PWZ 3 3 05 071 PWZ off period with pulse contact ctrl 10 min 0 240 After the run time of the pump PWZ has expired operation is blocked for this time 3 3 11 18 Legionella protection LEGIO option A legionella protection function can be programmed using the special time program on the control module If the legionella protection function is active i e parameter 05 01...

Page 52: ...1 18 1 Menu General LEGIO Parameters Designation Value Min Max Comments R W 05 014 Legionella protection function 0 No function Hot water is heated to the legionella protection reference temperature 05 004 according to a timer program and held for a time 05 043 0 No function 10 Active acc to program with pump PLE 11 Active acc to program with pump PWZ 4 4 30 011 Alloc inp TLE legionella temp 0 OFF...

Page 53: ...tion values 0 10V can be defined Individual designations names can be defined for each of these information values The value is shown without unit If a unit is required this must be put in the freely selectable designation name The voltage applied to the input is converted with a linear characteristic and displayed The characteristic passes through the zero point 0 volt displayed value 0 and throu...

Page 54: ...tion 1 0 10 V 0 OFF 3 VE3 6 FVT F 9 VE3 FE1 12 FVT F FE1 15 VE3 FE2 18 FVT F FE2 0 General info values 30 079 Name information 1 IMP Info 1 IMP General information info values 20 105 Pulse rate VIG information 1 IMP pulses per unit 2 General info values 20 070 Offset VIG information 1 IMP 0 General info values 20 080 VE input type 4 IMP passive only contact 0 General sensors 33 FVT F input type 3 ...

Page 55: ...n 3 0 OFF 1 VE1 2 VE2 3 VE3 5 FVT T 7 VE1 FE1 8 VE2 FE1 9 VE3 FE1 11 FVT T FE1 13 VE1 FE2 14 VE2 FE2 15 VE3 FE2 17 FVT T FE2 4 4 20 092 Name information 3 Info 3 0 13 Name information 3 4 4 30 074 Alloc inp information 4 0 OFF Alloc inp information 4 0 OFF 1 VE1 2 VE2 3 VE3 5 FVT T 7 VE1 FE1 8 VE2 FE1 9 VE3 FE1 11 FVT T FE1 13 VE1 FE2 14 VE2 FE2 15 VE3 FE2 17 FVT T FE2 4 4 20 093 Name information ...

Page 56: ...ate in pulses litre 4 4 20 081 Offset VIG information 2 IMP 0 28 10 00 10 00 Offset flow rate sensor collector Added to the measured value to obtain the finished measured value 4 4 30 081 Alloc inp information 3 IMP 51 Alloc inp information 3 pulse 0 OFF 3 VE3 6 FVT F 9 VE3 FE1 12 FVT F FE1 15 VE3 FE2 18 FVT F FE2 4 4 20 107 Name information 3 IMP 0 13 Name information 3 IMP 4 4 20 072 Pulse rate ...

Page 57: ...ation 3 0 10 V Info 3 VE0 10V 0 13 Name information 3 0 10 V 4 4 11 20 Menu General Clock Date Parameters Designation Value Min Max Comments R W 02 070 Date 2014 11 27 40908 65535 Date 0 0 02 072 Time of day 14 16 0 1439 Time of day 0 0 11 21 Faults In the Faults menu it is possible to read out the active faults In addition the last 20 faults can be requested in the error memory 11 22 Menu General...

Page 58: ...Status output activation 0 OFF 1 ON 3 3 21 038 VA3 output 1 0 1 Status output activation 0 OFF 1 ON 3 3 21 039 VA1 FE1 output 0 0 1 Status output activation 0 OFF 1 ON 3 3 21 040 VA2 FE1 output 0 0 1 Status output activation 0 OFF 1 ON 3 3 21 041 VA3 FE1 output 0 0 1 Status output activation 0 OFF 1 ON 3 3 21 043 VA1 FE2 output 0 0 1 Status output activation 0 OFF 1 ON 3 3 21 044 VA2 FE2 output 0 ...

Page 59: ...PT1000 3 3 33 005 FVT F input type 3 IMP sensor 3 IMP active flow rate sensor 4 IMP passive only contact 3 3 33 006 VE1 FE1 sensor type 0 KTY 0 KTY 1 PTC 2 PT1000 3 3 33 007 VE2 FE1 sensor type 0 KTY 0 KTY 1 PTC 2 PT1000 3 3 33 008 VE3 FE1 sensor input type 0 KTY 0 KTY 1 PTC 2 PT1000 4 IMP passive only contact 3 3 33 009 VE10V FE1 input type 5 0 1 3 3 33 010 FVT T FE1 input type 2 PT1000 0 KTY 1 P...

Page 60: ... 25 1 Menu general sensor balancing Parameters Designation Value Min Max Comments R W 33 050 VE1 sensor balancing input 0 K 10 0 10 0 4 4 33 051 VE2 sensor balancing input 0 K 10 0 10 0 4 4 33 052 VE3 sensor balancing input 0 K 10 0 10 0 4 4 33 054 FVT T sensor balancing input 0 K 10 0 10 0 4 4 33 055 VE1 FE1 sensor balancing input 0 K 10 0 10 0 4 4 33 056 VE2 FE1 sensor balancing input 0 K 10 0 1...

Page 61: ...1 00 1039 02 20 1922 00 964 00 1077 93 25 2000 00 1003 00 1093 46 30 2080 00 1042 00 1116 72 40 2245 00 1121 00 1155 39 50 2417 00 1202 00 1193 95 60 2597 00 1292 00 1232 39 70 2785 00 1384 00 1270 72 80 2980 00 1476 00 1308 93 90 3182 00 1576 00 1347 02 100 3392 00 1670 00 1385 00 110 3607 00 1763 00 1422 86 120 3817 00 1856 00 1460 61 130 4008 00 1498 24 140 4166 00 1535 75 150 4280 00 1573 15 1...

Page 62: ...dul Solar EN docx 62 95 11 26 Bootloader Internal datapoints for the bootloader function No settings are required here 11 27 Commissioning Internal datapoints for the commissioning wizard function No settings are required here ...

Page 63: ...ers Function group FunctionGroup 22 HMET FLOW TKV Collector 2 FunctionName Collector 2 DefaultValue Function FunctionNumber 1 1 2 3 4 5 6 Commis sioning 97 12 Function group collector 1 2 In the Collector function group values must be set and settings made that directly relate to the collector circuit The WMZ FLOW function includes parameters for the flow rate and heat measurement 12 1 Overview of...

Page 64: ...U 08 002 the solar pump PS1 switches off TKO TKmin and TKO TxU DIFFon 08 001 resulting in SP1 on TKO TKmin 5K or TKO TxU DIFFoff 08 002 resulting in PS1 off The pump runs for five seconds out starting speed at 100 and then switches to control operation So that TKOref reaches the temperature TKO the manipulated variable for the pump speed is calculated by PID controller Info temperature 00 014 Coll...

Page 65: ... 300 0 TKO1 collector temperature 0 7 01 014 Curr ref collector temp 46 7 C 0 0 130 0 Calculated reference value for collector temperature 3 7 01 050 PS curr speed solar pump 100 0 100 PS curr speed solar pump 0 7 02 031 Partial yield collector 1646 kWh 0 65535 Partial yield collector 0 7 02 034 Total yield collector 11646 kWh 0 0 Total yield collector 0 7 02 030 Current collector output 25 1 kW 0...

Page 66: ... solar 8 VA10V PWM Allocation output 0 10 V PWM solar pump 0 OFF 8 VA10V PWM 12 VA10V PWM FE1 16 VA10V PWM FE2 3 3 08 046 Delete partial yield 0 NO Delete partial yield Operating command 0 No function 3 Reset partial yield 0 0 12 4 Collector limit temperatures 12 4 1 Collector minimum temperature parameter 08 012 If the collector temperature at sensor TKO is greater than the collector minimum temp...

Page 67: ...use a passive and or active protection function to protect the plant further against overheating In the basic function setting 0 if the Maximum temperature storage tank is exceeded then the solar pump is switched off A switch off also takes place if the collector protection temperature is exceeded The pump is switched back on after the collector has cooled down 10K below Maximum temperature collec...

Page 68: ...ank temperature by 8K the solar pump is activated and the storage tank discharged Discharging is completed as soon as the collector temperature is only 4K above the storage tank temperature or the maximum storage tank temperature has been undershot by 15K 12 4 6 Frost protection 08 013 A frost protection function can be activated using the collector frost protection temperature parameter 08 013 If...

Page 69: ...or temperature TKO rises above the collector maximum temperature TKOmax 08 011 the overheating protection is activated and attempts to keep the collector temperature TKO within the collector maximum temperature TKOmax by speed control of the collector pump If the collector temperature reaches the protection temperature TKOprot 08 010 or the consumer protection temperature Txprot 08 060 is exceeded...

Page 70: ...ing allowed if TKO TKOprot 08 010 and TxU Txprot 08 060 Overheating protection active if TKOmax 08 011 TKO TKOprot 08 010 PS1 block charging if TKO TKOprot 08 010 or TxU Txprot 08 060 Overheating protection off or enable charging if TKO TKOmax 08 011 10K 12 4 8 Priority overheating protection If there is overheating on the collector the heat is output to the consumer with the greatest priority tha...

Page 71: ...t minimum speed 08 035 When the time has expired the temperature at the collector TKOx is measured If there is a sufficient temperature difference in relation to the consumer collector temperature TKOx is greater than consumer temperature TUx plus switch on difference Diffon 08 001 the solar pump remains operating If the switch on criterion is not met the collector temperature is set as a new refe...

Page 72: ...ng aid 0 0 1 If the collector temperature can only be registered with insufficient accuracy optimisation is possible using the starting aid function Due to a positive temperature change at the collector sensor the solar pump is switched on for a limited run time 08 017 The pump switches off again at the end of the time TKO is measured If the temperature difference in relation to the storage tank i...

Page 73: ...ated variable for the speed control of the collector pump 1 3 3 08 036 Max speed PS solar pump 100 5 100 Maximum manipulated variable for the speed control of the collector pump 1 3 3 08 091 Max dT collector storage tank 80 K 10 0 80 0 An error message is generated if the temperature difference between the collector and storage tank temperature with active solar charging during the time 08 092 is ...

Page 74: ...ing reference value increase 08 064 required by the technician because a smaller increase could lead to an inefficient charging procedure circulating with low yield Notice If the collector flow sensor option TKV 08 108 is active the temperature in the speed control of the solar pump is included and also influences the switch off condition of the solar charging The collector return temperature to b...

Page 75: ...deviations the value of the flow rate in l min can be corrected using the offset parameter 28 020 The volume flow is used as the basis for calculating the output of the solar circuit and the speed limit of the solar pump The measured volume flow in the unit l min is taken into account in the calculation of solar output The current volume flow is compared with the parameter maximum volume flow 08 0...

Page 76: ... 15 l min 1523 0 3 Huba type 200 DN10 AG 3 4 1 8 32 l min 721 0 2 Huba type 200 DN15 AG 3 4 3 5 50 l min 329 0 2 Huba type 200 DN20 AG 1 5 0 85 l min 162 0 3 PAW FlowRotor DN20 0 5 15 l min 186 0 28 PAW FlowRotor DN25 1 0 35 l min 80 0 66 PAW FlowRotor DN32 2 0 50 l min 55 0 56 VSG 1 5 DN15 AG 3 4 0 5 25 l min 2 0 VSG 2 5 DN20 AG 1 0 5 40 l min 2 0 VSG 6 DN32 AG 1 1 2 2 0 100 l min 1 0 ...

Page 77: ...flow sensor is connected the flow rate is monitored for the set minimum 08 038 and maximum limit 08 037 and the pump is controlled using speed control The flow rate is converted into a mass flow to take account of the dependency on temperature When flow rate measurement is active a return sensor TKR can be connected The return flow sensor is used as a reference sensor for the speed control of the ...

Page 78: ...he 100 setting command of the solar pump and balanced hydraulics Note In operation program manual 08 085 set to 100 Set the flow rate on float flow rate meter and read off A reference value of 0 5 l m2 can be set if no other value is specified in the manufacturer s documents 3 3 08 009 Spec thermal capacity solar liquid 3 2 kJ kgK 1 9 99 Spec thermal capacity of the collector fluid acc to manufact...

Page 79: ...P VE1 FE 1 etc 3 3 Charging plausibility If the TKV option collector flow sensor 08 108 and flow sensor 08 107 options are active the collector flow and return are registered by temperature sensors The temperature difference between these two values is measured If this difference is 2 on average charging is completed because no sensible charging of the consumer can take place any longer Also the d...

Page 80: ...mation Operation DisplayGroup Function name Parameters PPS Pump heat ex dc RTI HWCh ZONCh Solar storage tank 2 FunctionName Solar storage tank 2 DefaultValue Solar storage tank 3 FunctionName Solar storage tank 3 DefaultValue Solar storage tank 4 FunctionName Solar storage tank 4 DefaultValue 1 2 3 4 5 6 7 8 10 Commis sioning 97 13 Function group solar storage tanks 1 4 Up to four storage tanks ca...

Page 81: ...TB hot water temperature C 0 0 100 0 Temperature additional hot water storage tank TB option discharge PPS 2 7 00 003 THR heating circuit return temperature C 0 0 100 0 Option return flow increase 2 7 22 107 Switching valve return flow incr output 0 0 1 Switching valve return flow incr output 4 7 00 007 TFK solid fuel boiler temperature C 0 0 100 0 FK solid fuel boiler option 0 7 22 108 PFK solid ...

Page 82: ...pe 3 DHW storage tank 0 Off 1 Heating storage tank If the storage tank reference value is set below 20 C this is understood to be summer operation The storage tank reference value is lowered to the frost temperature of 10 C 3 Hot water storage tank All possibilities for the charging strategy are open For each application settings must be adapted for the switchover in swing operation 08 065 and 08 ...

Page 83: ...ised on storage tanks with large volumes temperature levels 4 4 08 066 Sw off threshold tank swing oper 4 K 1 0 20 0 If the storage tank temperature plus setting value is greater than the temperature in the other storage tank solar charging is blocked on this storage tank Note By setting different switch on and switch off thresholds swing operation can be optimised on storage tanks with large volu...

Page 84: ...er can be recharged with a heat source e g with an external boiler This function is activated with the option WWL 08 100 A time program on the control module special time program recharging enables the recharging by time and sets it to the particular required temperature If the temperature on the storage tank top sensor is less than the current reference value minus hysteresis 08 063 recharging is...

Page 85: ... term block 08 071 100 TxO TxOsetp 08 062 reference value reduction for recharging this reduction is maintained for 18 h Pcurr 0 night operation If heat is now drawn off recharging is triggered as follows If storage tank top sensor TxO TxOsetp_red hysteresis HYS 08 063 WWL active TxO TxOsetp 08 062 WWL off 13 1 5 Menu Solar storage tank WWL hot water charging option Parameters Designation Value Mi...

Page 86: ...PS discharge option Parameters Designation Value Min Max Comments R W 08 101 PPS discharge option 0 0 1 Option discharging the solar storage tank and charging an existing hot water storage tank consumer If TxO is greater than the storage tank reference value and TBx is less than TBref hysteresis 08 063 and TxO is greater than TB switch on difference 08 098 then PPS discharging is enabled If TxO is...

Page 87: ...ase Input 01 014Collector reference temperature 00 121 Temperature plate heat exchanger TPV Parameter 08 102 Option external decentralised plate heat exchanger 08 024 Minimum speed secondary pump PWV Output Manipulated variable y pump plate heat exchanger PWV 13 1 9 Menu Solar storage tank PWTDZ plate heat exchanger decentralised option Parameters Designation Value Min Max Comments R W 08 102 PWTd...

Page 88: ...ank temperature top TxO 30 003 is higher than on the reference sensor heating circuit return THR by the switch on difference return flow increase on 08 080 the return flow increase RLA is switched on If the temperature difference between storage tank sensor top TxO 30 003 and return flow sensor THR is less than the switch off difference return flow increase 08 081 or if the storage tank temperatur...

Page 89: ...urn is preheated via the buffer as soon as this is higher by a definable temperature difference and supplied in the boiler return and possibly post heated using the heat source CAUTION storage tank type 08 055 must be at 1 heat storage tank TxO THR switch on difference 08 080 TxO maximum temperature return increase 07 008 UHR active hysteresis 2K TxO THR switch off difference 08 081 or TxO maximum...

Page 90: ...ed control of the pump the attempt is made to charge the active heat exchanger with the fewest possible charging cycles to the required reference or maximum value Charging always starts at the bottom zone bottom tank sensor TxU if the threshold value switchover reference charging high yield 08 051 is exceeded or the sensor TKx is greater than TxO by the switch off differential 08 002 then charging...

Page 91: ...peed control then results from temperature at T1O plus optimised or charge increase 08 064 depending on the selected strategy TKO TxU DIFF ON 08 001 solar charging PS1 active Pact Pnom 08 030 calculated HighEnergy_avg HighEnergy Pnom 08 051 or TKx TxO DiffOff 08 002 the charging takes place to the upper zone TxO Xs TxO charging reference increase diff opt Pact Pnom 08 030 calculated HighEnergy_avg...

Page 92: ...w the switchover reference value 08 051 20 charging returns to the bottom heat exchanger CAUTION charging strategy 08 050 must be at 3 reference charging yield dependent 0 Off 1 Zone charging with actuator ZONLA 2 Stratified charging without actuator ZONLA 4 4 32 005 Alloc switching valve zone charging output 0 OFF Allocation of the output VA1 VA2 VA3 VA1 FE 1 etc 4 4 13 2 Function groups Week pro...

Page 93: ...8 Screed drying active 188 EBZ return sensor 69 Cleaning necessary 193 Buffer discharge flow sensor PEF 70 Maintenance necessary 194 Sensor thermostat 1 71 Temperature difference between collector 1 and storage tank too large 195 Sensor thermostat 2 73 Temperature difference between collector 2 and storage tank too large 196 Sensor thermostat 3 90 Fault heat generator 1 197 Sensor 1 differential c...

Page 94: ...p 124 Heat generator return sensor 313 Switch off thd collector pump switch on thd collector pump tank HYS_TEMP_DFLT 143 Heat generator flow and return sensor simultaneously 314 Switch off thd add boiler discharge switch on thd add boiler discharge HYS_TEMP_DFLT 145 Heat gen flow sensor pre ctrld flow 4 wy mixer 315 No tank active all types tank to 0 317 RT circ 05 054 tank max temp 1 08 059 319 R...

Page 95: ...4 213 321 V01 KDT RegelModul Solar EN docx 95 95 ...

Reviews: